首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approximate method is presented to estimate the hydrodynamic loading and structural response of an idealized offshore platform subjected to a regular train of linear surface waves. The platform is taken to consist of four bottom-mounted, flexible, circular cylinders supporting a rigid deck and is assumed to be aligned parallel to the incident wave direction. The response of each column is assumed to be one-dimensional and to be governed by linear beam theory. The solution technique for the fluid velocity potential involves replacing scattered waves by equivalent plane waves together with non-planar, first-correction terms, and can be shown to be a large spacing approximation.Numerical results are presented which show the effect of hydrodynamic interference and structural flexibility on the platform response.  相似文献   

2.
The hydrodynamic interactions due to wave scattering between the numbers of an array of stationary, truncated circular cylinders simulating the columns of an idealized tension-leg platform (TLP) are investigated. The method of solution for the fluid velocity potential involves replacing scattered waves by equivalent plane waves together with non-planar correction terms. This technique is, therefore, essentially a large spacing approximation. Use of this approach makes it possible to determine the hydrodynamic interactions between the array members utilizing only the diffraction characteristics of an isolated cylinder.Numerical results are presented for six array configurations consisting of 2–6 cylinders representing the legs of idealized TLPs. Calculations of the wave loads on these cylinders have been performed for a range of wave and structural parameters. It is found that, for certain parameter combinations, the influence of neighbouring bodies on the total wave field leads to hydrodynamic loading on individual columns which is significantly greater than the loading they would experience in isolation. The presented results demonstrate the significance of hydrodynamic interactions between TLP columns and clearly indicate that these effects should be considered by the designers and researchers associated with TLPs.  相似文献   

3.
The interaction of water waves with arrays of bottom-mounted, surface-piercing circular cylinders is investigated theoretically. The sidewall of each cylinder is porous and thin. Under the assumptions of potential flow and linear wave theory, a semi-analytical solution is obtained by an eigenfunction expansion approach first proposed for impermeable cylinders by Spring and Monkmeyer (1974), and later simplified by Linton and Evans (1990). Analytical expressions are developed for the wave motion in the exterior and all interior fluid regions. Numerical results are presented which illustrate the effects of various wave and structural parameters on the hydrodynamic loads and the diffracted wave field. It is found that the porosity of the structures may result in a significant reduction in both the hydrodynamic loads experienced by the cylinders and the associated wave runup.  相似文献   

4.
This paper addresses a numerical investigation of nonlinear waves interactions with an array of two surface-piercing vertical cylinders and the corresponding nonlinear hydrodynamic loads on each individual cylinder. The primary interest of this study is concentrated on the problem of three-dimensional scattering of solitary waves by cylinder arrays and the nonlinear interactions between scattered waves. The theoretical model adopted for simulation is the generalized Boussinesq two-equation model. The boundary-fitted coordinate transformation and multiple-grid technique are utilized here to simplify the computation domain and to facilitate the applications of the boundary conditions on the cylinder surfaces. The velocity potential, free-surface elevation and subsequent evolution of the scattered wave field are numerically evaluated. The hydrodynamic forces on each cylinder during wave impact are also determined. A study of the sheltering effect by the neighboring structures on wave loads is conducted. It is found that the presence of the neighboring cylinder has shown significant influence on the wave loads and the scattering of the primary incident waves. For two transversely arranged cylinders, the transverse force coefficient increases as the separation distance decreases.  相似文献   

5.
The research into hydrodynamic loading on ocean structures has concentrated mostly on circular cross-section members and relatively limited work has been carried out on wave loading on other cross-sections such as rectangular sections. These find applications in many offshore structures as columns and pontoons in semi-submersibles and tension-leg platforms. The present investigation demonstrates the behaviour of rectangular cylinders subject to wave loading and also supplies the hydrodynamic coefficients for the design of these sections.This paper presents the results of wave forces acting on a surface piercing truncated rectangular cylinder set vertically in a towing tank. The experiments are carried out in a water depth of 2.2 m with regular and random waves for low Keulegan–Carpenter number up to 6. The rectangular cylinder is of 2 m length, 0.2 m breadth and 0.4 m width with a submergence depth of 1.45 m from still water level. Based on Morison equation, the relationship between inertia and drag coefficients are evaluated and are presented as a function of KC number for various values of frequency parameter β, for two aspect ratios of cylinders, equals to 1/2 and 2/1. Drag and inertia coefficients obtained through regular wave tests are used for the random wave analysis to compute the in-line force spectrum.The results of the experiments show the drag and inertia coefficients are strongly affected by the variation in the aspect ratios of the cylinder. The drag coefficients decreases and inertia coefficients increases with increase in Keulegan–Carpenter number up to the range of KC number tested. The random wave results show a good correlation between measured and computed force spectrums. The transverse forces in both regular and random waves are found to be small compared to in-line forces.  相似文献   

6.
An array of large concentric porous cylinder arrays is mounted in shallow water exposed to cnoidal waves. The interactions between waves and cylinders are studied theoretically using an eigenfunction expansion approach. Semi-analytical solutions of hydrodynamic loads and wave run-up on each cylinder are obtained using first approximation to cnoidal waves. The square array configuration of four-legged identical concentric porous cylinder is investigated in present study. Numerical results reveal the variation of dimensionless wave force and wave run-up on individual cylinder with angle of incidence, porosity parameter, spacing between outer and inner cylinders, spacing between concentric porous cylinders and wave parameter. Different mechanism of wave force is found under different range of scattering parameter.  相似文献   

7.
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.  相似文献   

8.
Wave interaction with a concentric porous cylinder system   总被引:1,自引:0,他引:1  
This is a theoretical investigation of wave interaction with a concentric surface-piercing two-cylinder system. The exterior cylinder is porous and considered to be thin in thickness and the interior cylinder is impermeable. Both cylinders are rigidly fixed at the sea bed. The fluid motion is idealized as a linearized potential flow. The free-surface elevation and the total net hydrodynamic forces acting on both cylinders are determined analytically. The wave-induced overturning moments are also evaluated. It is found that, with the existence of the exterior porous cylinder, the hydrodynamic force acting on the interior cylinder is reduced if compared to the force exerted on the interior cylinder by a direct wave impact. The reduction of the wave amplitude around the leeward side of the outer porous cylinder is shown from the free-surface computations. In this paper, results are also presented to illustrate the effects of wave parameter and structural porosity on this wave and cylinder interaction problem. The role played by the ratio of radii of the inner and outer cylinders is duscussed.  相似文献   

9.
The three-dimensional scattering of cnoidal waves by cylinder arrays are studied numerically by using the generalized Boussinesq equations. The boundary-fitted coordinate transformation and a dual-grid technique are used to simplify the finite-difference computation. Also, a set of open boundary conditions and an incident cnoidal wave are incorporated for time-domain simulation. The free-surface elevation and hydrodynamic forces on each cylinder are calculated to illustrate the evolution of nonlinear waves and their interactions with large cylinder arrays. Comparisons are made between the present nonlinear wave loads and those obtained from linear diffraction theory. The sheltering role played by the neighboring cylinders and the feature of wave interference are discussed.  相似文献   

10.
通过速度势的特征展开方法,建立垂直圆柱对波浪绕射的解析解,得到作用在柱体上的波浪力计算表达式,通过谐波增量平衡法(IHB法),计算研究弹性双柱相对位置对双柱振动响应的影响。设计了弹性双柱体模型试验,数值结果与模型试验结果较吻合,为海洋工程结构振动设计提供一种解决方法。  相似文献   

11.
The wave diffraction around an array of fixed vertical circular cylinders is simulated in a numerical wave tank by using a fully nonlinear model in the time domain. The emphasis of the paper lies in the insightful investigation of the nonlinear properties of the near-trapping phenomenon associated with the multiple cylinders. The numerical model is validated by analytical solutions as well as experimental data for waves propagating past two and four vertical cylinders in certain arrangements. An array of four identical circular cylinders at the corners of a square with an incident wave along the diagonal of the square is the main focus here for investigating the near-trapping phenomenon. When near-trapping occurs, the present study shows that an extremely high wave elevation near the cylinders can be observed. At the same time, the hydrodynamic forces on different cylinders are found to be either in phase or out of phase, leading to some characteristic force patterns acting on the whole structure. Due to the nature of the numerical model adopted, nonlinearity at different orders can be captured using a harmonic analysis. In addition to first- and second-order near-trapping, the third-order (triple-frequency) nonlinear component is presented for the first time. For the configuration selected, it is found that at one specific incident wave frequency and direction one trapped mode is excited by second-order effects, while a different trapped mode (having similar symmetries) is excited by the third harmonic of the incident wave frequency.  相似文献   

12.
The hydrodynamic performance of a dual cylindrical caisson breakwater (DCBW) formed by a row of caissons each of which consisting of a porous outer cylinder circumscribing an impermeable inner cylinder has been theoretically investigated. The theoretical formulation is based on the eigenfunction expansion method proposed by Spring and Monkmeyer (1974) which was further modified by Linton and Evans [Linton, C.M., Evans, D.V., 1990. The interaction of waves with arrays of vertical circular cylinders. Journal of Fluid Mechanics 215, 549–569] for an array of impermeable cylinders. The present formulation is an extension of the work of Wang and Ren [Wang, K.H., Ren, X., 1994. Wave interaction with a concentric porous cylinder system. Ocean Engineering 21(4), 343–360], wherein; the interaction of linear waves with a single concentric porous cylinder system was studied. In the present study, the formulation has been extended to the case of a group of porous dual cylinder system. Parametric studies are carried out to study the influence of porosity (G0) on the outer caisson, width of the doughnut chamber (a/b) and the angle of wave incidence on the variation in the hydrodynamic loading, wave run-up, free-surface elevation in its vicinity as well as the transmission on its lee-side. The importance of the presence of the inner cylinder in achieving the required hydrodynamic performance in terms of either protection or providing tranquility on its lee side keeping higher stability for the breakwater system is highlighted.  相似文献   

13.
The hydrodynamic problem arising form the interaction of linear water waves with a wave energy device consisting of two coaxial vertical cylinders of different radii is investigated. One cylinder is riding in waves, while another is submerged in fluid. By use of the method of separation of variables and the method of matched eigenfunction expansion, analytical expressions for the potentials are obtained. Using the expressions for the potentials, analytical expressions for the hydrodynamic coefficients and exciting forces/moments on the device are obtained. Numerical results of the hydrodynamic coefficients and exciting forces/moments are presented for some ratios of the radius of the submerged cylinder to that of the riding one. It is found that the radius of the submerged cylinder has a significant influence on the hydrodynamic coefficients and exciting forces/moments for relatively bigger radius of the submerged cylinder at low frequencies.  相似文献   

14.
Most off-shore oil platforms are supported by vertical cylinders extending to the ocean floor. An important problem in off-shore engineering is the calculation of the wave loading exerted on these vertical cylinders. Analytical solutions have been found for the case of plane incident waves incident on a circular cylinder by MacCamy and Fuchs [(1954), Wave forces on piles: a diffraction theory. U.S. Army Corps of Engineering, Beach Erosion Board, Technical Memorandum No. 69] and also for short-crested waves incident on a circular cylinder by Zhu [(1993), Diffraction of short-crested waves around a circular cylinder. Ocean Engng 20, 389–407]. However, for a cylinder of arbitrary cross-section, no analytic solutions currently exist. Au and Brebbia [(1983), Diffraction of water waves for vertical cylinders using boundary elements. Appl. Math. Modelling 7, 106–114] proposed an efficient numerical approach to calculate the wave loads induced by plane waves on vertical cylinders by using the boundary element method. However, wind-generated waves are better modelled by short-crested waves. Whether or not these short-crested waves can induce larger wave forces on a structure is of great concern to ocean engineers. In this paper wave loads, induced by short-crested incident waves, on a vertical cylinder of arbitrary cross-section are discussed. For a cylinder of certain cross-section, the wave loads induced by short-crested waves can be larger than those induced by plane waves with the same total wave number.  相似文献   

15.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

16.
The radiation problem for two parallel-spaced cylinders is studied. The solution is expressed explicitly in terms of well-behaved convergent series with elementary functions, which are convenient for numerical computation and readily applicable for two-dimensional two-body potential problems. The added mass and damping coefficients together with the phase angles of radiated wave potentials for the forced heave and sway motions of two identical submerged cylinders are presented. The results are useful for determination of the hydrodynamic properties of multi-hull semi-submersibles. In view of the close relationship between a radiation and a scattering problem, the application of the results to the problem of energy extraction from water waves is also noted.  相似文献   

17.
The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory.To design more effective floating breakwaters,the transmission rate of waves propagating through the array is evaluated.Each cylinder in the array is partly made of porous materials.Specifically,it possesses a porous sidewall and an impermeable bottom.In addition,an inner porous plate is horizontally fixed inside the cylinders.It dissipates the wave more effectively and eliminates the sloshing phenomenon.The approach suggested by Kagemoto and Yue(1986) is adopted to solve the multiple-scatter problem,while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies,which efficiently saves computation time.Meanwhile,a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results.The draft of the cylinders,the location of the inner porous plate,and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.  相似文献   

18.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

19.
通过物理模型实验,对沙质海床上沉入式大直径圆筒结构对波浪的动态响应进行了较系统的实验研究。实验中考虑了大直径圆筒、波浪和海床三者之间的耦合作用,并实时记录了大直径圆筒结构的动态响应。实验数据分析表明,大直径圆筒在波浪作用下的动态响应以大圆筒随波浪的前后摆动为主,其摆动轴心并不是固定不变的。最后通过回归分析给出了估算大直径圆筒摆动转角幅值的经验公式。  相似文献   

20.
Based on Morison's Equation and linear wave theory, hydrodynamic forces acting on inclined cylinders due to waves and crossing current at an angle of a, are analyzed. A method for calculating exciting forces is proposed. Experimental results show that the proposed method in this paper is feasible and can be used in engineering practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号