首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Electrical conductivity of rocks being closely related to their temperature could serve as a proxy parameter to be used for indirect temperature estimation from the surface electromagnetic (EM) data. Studies are carried out aimed at estimating the feasibility of indirect temperature estimation in the geologically complicated areas of the Earth crust from the electromagnetic data collected at the surface. Basing on the neuronet analysis of magnetotelluric (MT) and temperature data measured at the Bishkek geodynamical testing ground in the northern Tien Shan, optimal methodologies for calibration and application of indirect electromagnetic geothermometer are developed. It is shown that the temperature estimation my means of the EM geothermometer calibrated by 6–8 temperature logs results in 12% average relative error (instead of 30% achieved using only temperature logs). The availability of prior geological information about the region under study and preliminary analysis of the local heterogeneities' indicators determined from the available MT data make it possible rejection of inappropriate site locations that may, in turn, decrease average error to only 11%.The results of the electromagnetic temperature extrapolation in depth indicate that the extrapolation accuracy essentially depends on the ratio between the well length and the extrapolation depth. In particular, in extrapolation to a depth twice as large as the well depth the relative error is 5–6%, and in case of its threefold excess the error is around 20%. This result makes it possible to increase significantly the deepness of indirect temperature estimation in the Earth interior (in particular, for geothermal exploration) based on the available temperature logs.  相似文献   

2.
The paper analyzes the correlation between the electrical conductivity and temperature in the upper crust of the Bishkek geodynamic research area (the Northern Tien Shan). Electrical conductivity profiles constructed from magnetotelluric data and thermograms from the boreholes near magnetotelluric sounding (MTS) points are used for estimations. The correlation analysis of conductivity and temperature profiles to depths of 3–4 km showed that, first, the correlation coefficients do not depend on the distance between the borehole and the nearest MTS point; second, the good correlation between the conductivity and temperature observed for the majority of borehole-MTS point pairs is accounted for by the fact that the study parameters vary with depth in a manner normal for laminated sedimentary rocks; and, third, a low correlation is due to specific features of the geological structure between the borehole and MTS point under consideration.  相似文献   

3.
Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which could contain geothermal resources may be more easily resolved by measuring relative values at a standard depth (e.g. 100 m) so that all data are subject to similar corrections.Regional heat flow data obtained in existing deep holes show reasonable correlation with values determined at shallow depth. Hence geothermal resources of low enthalpy can be characterised by extrapolating temperatures from relative heat flow data readily obtained from shallow boreholes. Regional control can be provided by casing deep boreholes drilled for other purposes.For routine geothermal exploration, borehole temperatures can be measured using gradient probes with fixed sensor separation (e.g. 5 m), allowing very accurate determinations of the geothermal gradient at a single depth. Values of relative heat flow can then be obtained after determining the thermal resistivity of the corresponding core interval. Sampling errors can be minimised by multiple determinations of thermal conductivity over the complete interval.  相似文献   

4.
The possibility of contactless remote estimation of the temperature in the Earth’s interior from surface magnetotelluric (MT) measurements is examined. The neuronet analysis of MT and temperature measurements in the Bishkek geodynamic research area (the Northern Tien Shan) showed that a contactless electromagnetic geothermometer can in principle be realized. An optimal method including MT measurements and treatment of available thermograms is developed. The method minimizes uncertainties of the remote temperature estimation. The use of six to eight thermograms for calibration of electromagnetic data is shown to provide a 12% relative error of prediction, and a priori geological information available for the region under study can reduce this error. Areas of practical application of a contactless electromagnetic geothermometer are outlined.  相似文献   

5.
Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350–1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200–1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.  相似文献   

6.
中国大陆科学钻探靶区深部温度预测   总被引:12,自引:1,他引:12       下载免费PDF全文
依据中国大陆科学钻探(CCSD)两口先导孔中地热测量和岩石样品热物性参数,对5000m深钻的可能钻遇温度进行了预测.先导孔中地温梯度介于1-26℃/km;岩石热导率变化为2.64-8.81W/(m@K),平均(3.4±1.26)W/(m@K);实测热流值为76-80mW/m2;30块岩石样品放射性生热率变化为(0.0-2.17)μW/m3,450m深度以上层平均(0.76±0.5)μW/m3,以下层段平均(0.48±0.2)μW/m3,生热率随深度递减,但变化趋势难以明确判定.分别对热流和热导率取上、下限,采用不同的生热率随深度的分布函数,区分考虑或不考虑热导率的温度相关性,分别计算出5000m深度内可能的温度分布剖面.计算结果表明,超深井于5000m垂直深度上的温度将达到110-140℃,2000m深度的探井钻遇温度将介于54-64℃.此外,考虑热导率的温度效应后预测的温度一般高于未考虑热导率温度效应5-8℃.  相似文献   

7.
Feasibility of recovering the magma chamber’s parameters by 3D Bayesian statistical inversion of magnetotelluric data is estimated for the simplified conductivity model of the Vesuvios volcano. The results indicate that in the lack of prior information and data, the most efficient approach may consist in successive estimation of the geometry and the depth of the anomaly followed by estimation of the electric conductivity distribution in it. The horizontal boundaries of the target could be outlined by the high gradients of the impedance determinant phase pseudosections determined by the upward analytical continuation of the anomalous electromagnetic fields from the relief surface to the artificial reference plane located above the summit of the volcano. The vertical boundaries and the target extension as well as the electric conductivity could be estimated successively by means of 3D Bayesian statistical inversion of the collected magnetotelluric data carried out in the domain delimited by the estimated horizontal boundaries.  相似文献   

8.
In total 77 direct current resistivity soundings were carried out during a geothermal exploration survey of the Genisea, NE Greece, geothermal field. The data revealed a high electrical conductivity zone at the center of the investigated area and suggested that an anomalous heat source lay beneath the study area. This was confirmed by subsequent drilling data. Temperature measurements, from 11 boreholes, were used for the construction of isotherms that correlated very closely with the geoelectric data.  相似文献   

9.
华北平原区地温梯度与基底构造形态的关系   总被引:8,自引:0,他引:8       下载免费PDF全文
本文根据部分实测温度资料和有限单元法的数值模拟计算结果,研究了华北平原区地温梯度和地表热流值与基底构造形态的关系,分析了盖层相对厚度、基岩侧界面倾角以及不同岩石热导率比值对地温梯度和地表热流分布图式的影响,并讨论了地壳浅部热流的折射和再分配问题。在此基础上,提出了华北平原区地温梯度和热流值基底构造形态的相关直线校正法,即根据不同构造部位上钻孔的实测地温梯度和盖层相对厚度的相关直线推算区域平均地温梯度和具代表性区域热流值的方法。  相似文献   

10.
In tectonically active regions electrical conductivity anisotropies are the dominating features. The importance of conductivity anisotropy in the interpretation of magnetotelluric data is well known. In the present study numerical results presented which show the effect of a substratum with inclined anisotropy on the magnetotelluric response. The pronounced change on the magnetotelluric response is found for the models in which the substratum underlies (i) conductive and (ii) resistive overburden.  相似文献   

11.
The article discusses the results of the interpretation of magnetotelluric sounding (MTS) data generated in the vicinity of the Mutnov steam hydrothermal deposit during the period from 2004 to 2006. Approaches to an interpretation of magnetotelluric (MT) data in a situation characterized by significant 3D distortions and the coastal effect phenomenon are discussed. The resulting 3D geoelectric model is presented. Based on analysis of the created geoelectric model, the principal geoelectric horizons are characterized, which includes the parameters of the integral conductivity and the morphology of the geoelectric boundaries. Zones of the highest values of the electrical conductivity of the watered tuffaceous sediment horizon have been identified, as well as zones of the maximum lateral electrical conductivity contrasts that are interpreted as discharge zones of hydrotherms. The results of the drilling carried out based on MTS data are presented.  相似文献   

12.
A part of the Békés Basin (an extensional sub‐basin of the Pannonian Basin, where the basement under thick Pannonian sediments is well known from deep boreholes and from seismic measurements, and where many magnetotelluric (MT) soundings have been carried out for frequencies ranging from 1 to 10?3 Hz) was selected as a test area to assess the imaging performances of various apparent‐resistivity definitions computed with rotational invariants of either the real part of the complex impedance tensor, or its imaginary part, or both. A comparison (based on earlier 3D numerical studies) has been made between the magnetotelluric images obtained in this way and the depths to the high‐resistivity basement, as known from boreholes and seismic investigations. The correlation coefficient between the series of basement depth values at 39 MT sites and the apparent‐resistivity values was found to be stronger and high correlation appeared at a shorter period when it was computed with apparent resistivities based on the real tensor rather than with apparent resistivities based on the imaginary tensor. In the light of our studies, ρRe Z and the impedance phase seem to be more informative than any other combination of magnetotelluric interpretation parameters.  相似文献   

13.
四川盆地钻孔温度测量及现今地热特征   总被引:19,自引:11,他引:8       下载免费PDF全文
基于四川盆地9口钻孔的稳态测温资料和297块岩石样品的热导率数据,报道了9个高质量的大地热流数据,提出了沉积地层岩石热导率系列柱.结合前人的数据资料,绘制了地温梯度和大地热流等值线图.四川盆地沉积地层的岩石热导率变化主要由岩性控制,与现今埋藏深度没有明显的相关性.盆地的地温梯度为17.7~33.3℃/km,平均值为22...  相似文献   

14.
为了建立具有普遍适用性的上地幔电性结构,本文利用Kawai-1000t压机和Solartron IS-1260阻抗/增益-相位分析仪,在4.0~14.0 GPa、873~1673 K的条件下,采用交流阻抗谱法(频率范围10-1~106Hz)测量了不含水的地幔岩电导率.实验结果显示,岩石的电导率随温度升高而大幅度的增大;在较大的温度范围内岩石的导电机制发生了变化,中低温时为小极化子导电,此时激活焓为0.94 eV (±0.13) eV,激活体积为0.11(±0.92) cm3·mol-1,高温时为和镁空穴相关的离子导电,此时激活焓为1.6~3.17 eV,激活体积为6.75(±7.43) cm3·mol-1;本次测量的电导率比低压下岩石的电导率要高,比矿物的电导率也要高.用本次的实验结果回归计算得到Fennoscandian地区的上地幔的一维电导率剖面,发现200 km以上本次实验计算的结果和大地电磁测深的电导率剖面吻合的比较好,在200 km以下本次实验得到的要比野外测量的电导率稍稍高一点,可能是因为实验过程中没有完全避免水的影响.本次的实验结果比用有效均匀介质方法计算得到的pyrolite矿物模型的电导率要高出两个数量级,这样的结果显示只用一种矿物的电导率或是几种矿物理论计算的结果有一定的不合理性.  相似文献   

15.
分析了深部地热资源勘察中的地球物理电磁法应用现状,阐明了被动式超低频电磁法在深部地热资源勘察中的可用性和优势;重点论述了被动式超低频电磁法在深部地热资源勘察中的探测机理.利用北京大学研制的BD-6型被动式超低频电磁探测仪在京热119井和168井附近布点探测,在探测过程中利用硬件滤波和水平旋转探头方向的方法消除了工频50Hz的部分谐波干扰,同时探测曲线的重复性也非常好,得到了相应井位的超低频电磁探测数据.在对深部热水储层和盖层岩性界面进行地质解释后,得到热储层赋存深度的绝对误差为23-50 m,盖层岩性界面的相对误差小于6.3%.探测结果表明借助被动式超低频电磁探测仪,可以较准确地获得深部岩溶裂隙地热水的分布信息.  相似文献   

16.
两淮煤田大地热流分布及其构造控制   总被引:2,自引:1,他引:1       下载免费PDF全文
基于127块煤系地层岩石样品的热导率测定结果,并结合59个井田内可靠的系统测温数据,计算得出两淮煤田的大地热流值,并编制大地热流分布图,其结果表明:两淮煤田大地热流值变化范围为29.7~83.9mW·m-2,平均值为58.3mW·m-2,和其他沉积盆地存在一定的差异,且淮南煤田大地热流值(63.7mW·m-2)远大于淮北煤田(55.2mW·m-2).综合分析得出,两淮煤田大地热流与其他盆地的差异以及淮南煤田热流值高于淮北煤田的现象为构造演化和区域地质背景的控制结果;而研究区内热流的分布不均主要是由于受地质构造对地温场的影响所致,推覆构造上下盘现今热流值的差异尤为突出.  相似文献   

17.
西藏南部蛇绿岩套电导率研究   总被引:1,自引:1,他引:0       下载免费PDF全文
大地电磁(MT)资料显示,青藏高原地壳及地幔中普遍存在着高导层.作为大陆造山带中古洋盆岩石圈残片,蛇绿岩套的电导率测量可为了解古洋盆地区地壳及地幔的电性结构提供极其有用的信息.本研究中,我们在压力为1 GPa或3 GPa下,用交流阻抗谱法测量了采自西藏南部地区的蚀变辉长岩、玄武岩、角闪橄榄岩及方辉橄榄岩四个样品的阻抗谱,并进一步得出样品的电导率,不同样品电导率与温度之间的关系满足Arrhenius关系式.在实验温度范围内,蛇绿岩套电导率的对数logσ位于-6.0~-0.5 S/m之间,且随着温度的增高,不同样品电导率增大约4~5.5个量级.样品在未脱水的情况下,低温段的活化焓变化范围在0.4~0.6 eV之间,高温段的活化焓变化范围为1.7~2.6 eV之间.同时,我们研究了样品中结构水含量及铁含量对实验电导率的影响,验证了样品电导率与铁含量之间呈正比关系.当对样品结构水含量进行归一化后,相同温度下各样品的电导率随铁含量的增加而增大,而对样品铁含量归一化后,相同温度下各样品的电导率随样品中水含量的增加而增大.将实验电导率与藏南地区大地电磁结果进行了对比,发现本研究中各样品高温段实验电导率结果均落在大地电磁结果范围内.  相似文献   

18.
I review recent investigations on the electrical conductivity of the lithosphere and asthenosphere in Europe. The principal method in the reviewed studies is the magnetotelluric method, but in many cases other electromagnetic methods (e.g., magnetovariational profilings and geomagnetic depth soundings) have provided additional information on subsurface conductivity or have been the primary method. The review shows that the magnetotelluric method has been used, and is being used, in all kinds of environments and for many different processes shaping the crust and lithosphere. The crust is very heterogeneous, both with respect to the scale of conductive/resistive features and interpretations: research targets vary from Archaean palaeostructures to ongoing processes. The European database of the depth to the lithosphere-asthenosphere boundary (LAB) in Europe is updated, and a new map showing lateral variations of the depth of LAB is provided. The compilation shows that (1) the Phanerozoic European lithosphere, with considerable variations (45–150 km), is much thinner than the Precambrian European lithosphere, (2) the Trans-European Suture Zone is a major electrical border in Europe separating electrically (as well as geophysically and geologically in general) two quite different settings, (3) the thinnest lithosphere is found under the extensional Pannonian Basin (45–90 km), (4) in most of the East European Craton there are no indications of a high conductivity zone in upper mantle. In many regions there is no information at all on upper mantle conductivity, which calls for pan-European projects to operate arrays of simultaneously recording instruments with long recording periods (2–8 months) and dense spatial sampling (20–50 km).  相似文献   

19.
居里面是地球内部铁磁性物质向顺磁性物质转换的界面,在温度略低于居里点时物质磁化率会快速升高,这被称为Hopkinsin峰.对于地球内部而言Hopkinsin峰是只有几百米至几公里厚的薄层,由于其与居里温度的关系,因此其底界面的深度可以作为居里面深度的估计.传统的居里面深度探测方法包括谱分析方法、等层模型方法和温度-深度剖面法.这些方法是人们研究地球内部热结构和居里面深度的重要手段,但是谱分析和等层模型的结果均有一些固有的缺点,如横向分辨率太低等;而地热方程的结果则受地表因素影响十分严重,并且地球内部的热源分布也不是十分清楚,这导致了其结果是不可靠的.本文提出用MT方法探测居里面深度,通过对几种简单一维模型进行的正反演数值试验,论证了该方法的可行性.结果表明,用MT方法研究居里面性质,不但可以得到居里面深度,还可以得到居里面顶部Hopkinsin峰所对应介质的电学和磁学性质,但必须同时反演岩层的电阻率和磁导率,才能获得较为可靠的居里面深度估计.  相似文献   

20.

Synchronous annual variations in the geoelectric and geomagnetic field are studied on the basis of long-term electromagnetic monitoring. It is shown that the annual geoelectric variations have intraterrestrial origin and are not related to the annual geomagnetic variations. Temporal variations in the magnetotelluric impedance and magnetic tipper, which characterize the electrical conductivity of the geological environment, are analyzed. It is established that annual variations in the magnetotelluric impedance mainly describe the variations in the electrical conductivity of surface crustal layers and are less sensitive to the deep electrical conductivity of the Earth. The annual variations in the imaginary magnetic tipper at the periods of 1000–3000 s probably reflect the changes in conductivity of a deep transversal low-resistive zone (the fault). It is suggested that annual variations in the geoelectrical and geomagnetic fields, as well as in the electrical conductivity of the geological environment, arise as a response to the changes in the geodynamical processes caused by the revolution of the Earth around the Sun.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号