首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the PREM seismic model, the boundary between the upper and the lower mantle is accepted at a depth of 670 km, where seismic velocities and density increase. However, until recently there was an obvious inconsistency in this model. The density increases abruptly, and the velocities, in addition to the jumps, have also the subsequent zones of increased gradient. The discontinuity between the upper and the lower mantle is related to the transition of olivine from the ringwoodite phase into the mixture of perovskite and magnesiowustite. However, in the pyrolyte model, the transition zone of the upper mantle consists not wholly of olivine, but partly of olivine (60%) and partly of garnet (40%). The latest data of the garnet measurement at high pressures show that it also experiences phase transition, being converted into magnesium perovskite with the impurity of calcium perovskite. In contrast to the sharp transition in olivine (within a depth interval of only 5 km), the transition in garnet is spread over the interval of depths of 660–710 km. In the widely used PREM and AK135 models, this additional transition corresponds to the zone of the increased gradient in seismic velocities, while in the density distribution it is included in the sharp transition of ringwoodite. Thus, the mineralogy data indicate the need for correction of the PREM and AK135 seismic models: the density jump at a depth of 660 km should be reduced by approximately a factor of two, and a subjacent layer with the increased density gradient should be added at the depth interval of 660–710 km. The phase transition in olivine hampers the mantle flows, although in garnet it accelerates them. Therefore, with an allowance for the smaller jump in density, the decelerating effect of the subducting plates, caused by the phase transition in olivine, decreases, and, furthermore, the effect of their acceleration, caused by the phase transition in garnet, is added. The decrease in the density jump by almost a factor of two will lead to essential changes in the results of the majority of recent works addressing the assessment of the deceleration of convection at the upper/lower mantle discontinuity on the basis of the PREM model.  相似文献   

2.
Peridotite inclusions, crystal fragments, and kimberlite breccia at Green Knobs, New Mexico, have been studied to evaluate compositions and processes in the upper mantle below the Colorado Plateau. Most peridotite inclusions are spinel lherzolites and harzburgites, or their partly hydrated equivalents, in the Cr-diopside group. Orthopyroxene-rich websterites and olivine websterites comprise 3% of the peridotites and formed as cumulates. Typical anhydrous or slightly hydrated peridotites contain aluminous, calcic diopside (5–7% Al2O3), aluminous orthopyroxene (3–6% Al2O3), spinel, and olivine (near Fa9). Geothermometers based on different mineral pairs yield temperatures from above 1100°C to below 700°C in single rocks. High values, derived from pyroxenes with included exsolution lamellae, may approximate temperatures of primary crystallization. Low values, based on olivine-spinel and olivine-clinopyroxene pairs, approach upper mantle temperatures before eruption. In rare samples, some spinel grains are rimmed by garnet while others are not rimmed; garnet formation was controlled by nucleation kinetics. About one-third of the peridotites were deformed shortly before eruption, with effects ranging from mild cataclasis to the production of ultramylonites.Discrete crystals of garnet, olivine (near Fa8), and Cr-diopside represent garnet peridotite. Eclogites were not found. The garnet peridotite is more depleted than overlying spinel peridotite, and it is not a likely source for the minettes associated with the kimberlites.The mantle below Green Knobs consists of spinel peridotite from 45 to perhaps 60 km depth immediately underlain by more-depleted garnet peridotite. The position of the spinel-garnet transition may be fixed by kinetics. The kimberlite may have been produced when heat from ascending minette magma released volatiles from otherwise depleted garnet peridotite. Resulting gas-solid mixtures erupted along zones of deformation associated with Colorado Plateau monoclines. Sheared lherzolites formed during renewed movement along these zones.  相似文献   

3.
Origin of calc-alkalic andesite in the Japanese Islands is reviewed on the basis of the recent trace element data and new experimental results. It is suggested that calc-alkalic andesites in the Japanese Islands have at least four different origins; (1) fractional crystallization with separation of magnetite of high-alumina basalt magma, (2) partial melting of hydrous upper mantle peridotite (for magnesian andesite), (3) fractional crystallization with separation of olivine and/or orthopyroxene of magnesian andesite magma and (4) mixing of dacitic and basaltic magmas. Emphasis is placed on the possible generation of primary magnesian calc-alkalic andesite magmas by direct partial melting of the upper mantle peridotite under hydrous conditions at depths between 40 and 60 km.  相似文献   

4.
Fractional crystallization behaviour of a magma ocean extending to lower mantle depths was deduced from estimations of melting relations for the deep mantle and the density relationships between ultrabasic liquid and mantle minerals. The accretional growth of the Earth necessarily involves a molten zone (magma ocean) in the outer layer of the growing Earth. The fractionation by melting during accretion results in primary stratification composed of a molten ultrabasic upper mantle (magma ocean), a perovskite-rich lower mantle, and an iron core. A certain amount of Al2O3 and CaO was removed from the magma ocean and retained in the lower mantle due to eclogite fractionation in the early stage of accretion and the perovskite fractionation in the later stage of accretion. Models of the stratification of the upper mantle arising from fractional crystallization of the magma ocean and subsequent convective disturbance were deduced on the basis of estimations of melting relations for the deep mantle and the density relationships between the ultrabasic liquid and mantle minerals. The stratification of the mantle, which is consistent with geophysical constraints is as follows; the upper mantle is composed of two layers, the upper olivine-rich layer and the lower garnet-rich layer with a thickness around 200 km, and the lower mantle with a perovskite-rich composition. In this model, both the 400 and 650 km discontinuities are the chemical boundaries.  相似文献   

5.
The strong control that the endothermic phase change from spinel to perovskite and magnesiowüstite at a depth of 660 km has on mantle convection is discussed. The phase transition determines the morphology and length scales of upflow and downflow structures and, through retardation of sinking slabs, can cause an avalanche phenomenon involving rapid flushing of cold upper mantle material down to the base of the lower mantle. The phase change significantly heats plumes that rise from the lower mantle and penetrate into the upper mantle. The exothermic phase change from olivine to spinel at a depth of 400 km in the mantle mitigates the effects of the dynamically and thermally dominant endothermic phase transition.  相似文献   

6.
We present here a new model of core formation which is based on the current understanding of planetary accretion and discuss its implications for the chemistry of the Earth's mantle and core. Formation of the Earth by hierarchical accretion of progressively larger bodies on a time scale much longer than that of solid body differentiation in the nebula indicates that a significant fraction of metal in the core could be inherited from preterrestrially differentiated planetesimals. An analysis of the segregation of this iron to form the core suggests that most of the metal settles to the core without interaction with silicates; only a small fraction of the metal chemically equilibrates at high temperatures and pressures with the silicates. The siderophile element abundances in the mantle are considered to be a consequence of a two-step equilibration with iron, once preterrestrially in the planetesimals at low temperatures and pressures, and later in the Earth at high temperatures and pressures. The highly siderophile elements such as Re, Au and the platinum group elements in the mantle are essentially excluded from silicates from the preterrestrial equilibration. We attribute the abundances of these elements in the mantle to the later equilibration in the Earth at substantially reduced metal-silicate partition coefficients (Dmet/sil), for which there is a considerable experimental evidence now. Mass balance considerations constrain the fraction of core metal involved in such an equilibration at approximately 0.3 – 0.5%. The model accounts for the levels and the near-chondritic ratios of the highly siderophile elements in the mantle. The mantle abundances of the less siderophile elements are largely determined by preterrestrial metal-silicate equilibrium and are not significantly affected by the second equilibration. The extreme depletion of sulfur and the lack of silicate melt-sulfide signature in the noble metal abundances in the mantle are natural consequences of this mode of core formation. Sulfur was added to the magma ocean during the high-T, high-P equilibration in the Earth, not extracted from it by sulfide segregation to the core. Except for Ni and Co, the overall siderophile abundances of the mantle can be well matched in this two-step equilibration model.

The mantle characteristics of Ni and Co are unique to the Earth and hence suggest a terrestrial process as the likely cause. One such process is the flotation and addition of olivine to the primitive upper mantle. In our model of core formation, neither the elemental and isotopic data of Re---Os, nor the low sulfur content of the mantle remains as an objection to the existence of a magma ocean and olivine flotation.

The small fraction of core metal that equilibrates with silicates at high T and P suggests that the light elements O, Si or H are unimportant in the core, leaving S (and possibly C) as prime candidates. Sulfur, as FeS associated with incoming iron metal, is directly sequestered to the core along with the bulk of the iron metal. It appears unlikely that other light elements can be added to the core after its formation. U and Th are excluded from the core but the model allows for entry of some K; however, the extent to which K serves as a heat source in the core remains uncertain.

The model is testable in two ways. One is by investigation of the metal-silicate partitioning at high temperatures and pressures under magma ocean conditions to determine if the (Dmet/sil) values are lowered to the levels required in the model. The other is by experiments to determine if a solvus closure between metal and silicate liquids occurs at high temperatures relevant to a magma ocean.  相似文献   


7.
Seismic anisotropy has been widely used to constrain deformation and mantle flow within the upper mantle of the Earth's interior, and is mainly affected by crystallographic preferred orientation(CPO)of anisotropic mineral in lithosphere. Anisotropy of peridotites caused by deformation is the main source of seismic anisotropy in the upper mantle. Olivine is the most abundant and easily deformed mineral to form CPO in peridotite, thus the CPO of olivine controls seismic anisotropy in the upper mantle. Based on simple shear experiments and studies of natural peridotites deformation, several CPO types of olivine have been identified, including A, B, C, D, E and AG-type. Studies on the deformation of olivine have shown that the CPO of olivine is mainly related to stress, water content, temperature, pressure, partial melting and melt/fluid percolation. Most of the seismic anisotropy has been explained by the A-type olivine CPO in the upper mantle, which is commonly found in upper-mantle peridotites and produced by the simple shear in dry conditions. Previous studies showed that anisotropy was attributed to the CPO of mica and amphibole in the middle-lower crust. The comparison between mantle anisotropy calculated from mineral CPO and regional anisotropy deduced from geophysical methods is therefore particularly useful for interpreting the deformation mechanisms and geodynamic processes which affect the upper mantle in different tectonic units such as subduction system, continental rift and continental collision zone in the world. The paper summarizes the characteristics of CPO and anisotropy of major anisotropic minerals in the upper mantle. Taking the lithosphere mantle xenoliths in the southeastern Tibetan plateau as an example, we perform detailed studies on the microstructures and seismic anisotropy to better understand the deformation mechanisms and upper mantle anisotropy in this region. Results show that the CPO of olivine in peridotite xenoliths in southeastern Tibetan plateau are A-type and AG-type. The mechanisms proposed for the formation of AG-type are different from that for the A-type. Therefore, the occurrence of AG-type olivine CPO pattern suggests that this CPO may record a change in deformation mechanism and tectonic environment of the lithosphere in southeastern Tibetan plateau. Provided that the strong SKS(shear wave splitting)observed in southeastern Tibetan plateau results from lithosphere mantle, the lithosphere mantle in this region is expected to be at least 130km thick and characterized by vertical foliation. Considering that the thickness of lithosphere in southeastern Tibetan plateau is much less than 130km and the lithosphere mantle cannot explain the anisotropy measured by SKS, other anisotropy sources should be considered, such as anisotropy in the asthenosphere and the oriented melt pockets(MPO)in the upper mantle. Therefore, detailed study of CPO of anisotropic mineral is essential for constraining geophysical measurements and analyzing the dynamic process of the lithosphere reasonably.  相似文献   

8.
Layered sills and flows are conspicuous in the komatiitic volcanics of the Chukotat Group of the Aphebian Cape Smith fold belt in New Quebec. These bodies consist of a lower ultramafic member with an overlying gabbroic complex and are bound by margins of quench-textured, pyroxene-rich melanogabbro. Features such as cyclic layering of pyroxenite and peridotite, successive appearance of euhedral olivine, clinopyroxene, and plagioclase, and polarized compositional variation indicate that the ultramafic member and lower gabbro are crystal cumulates. The uppermost gabbros, however, appear to represent liquids derived by removal of these cumulates. The significance of these bodies is that their initial liquids were at least as basic as pyroxenitic komatiites (14 wt.% MgO) while the residual liquids are Fe-Ti-rich tholeiites. Similarity between the liquid line of descent within these differentiated bodies and the spectrum of volcanic composition of the Chukotat Group as a whole suggests that the komatiites and tholeiites of the latter may constitute a single magmatic suite whose chemical diversity is a function of low-pressure, crystal fractionation.  相似文献   

9.
Tetsuo  Irifune 《Island Arc》1993,2(2):55-71
Abstract Phase transformations in model mantle compositions and those in subducting slabs have been reviewed to a depth of 800 km on the basis of recent high-pressure experimental data. Seismic velocity and density profiles in these compositions have also been calculated using these and other mineral physics data. The nature of the seismic velocity and density profiles calculated for a pyrolite composition was found to generally agree with those determined by seismic observations (e.g. PREM). The locations of the seismic discontinuities at 400 and 670 km correspond almost exactly to the depths where the transformations of the olivine component to denser phases take place. Moreover, the steep gradients in the seismic velocity/density profiles observed between these depths are qualitatively consistent with those expected from the successive transformations in the complementary pyroxene-garnet component in the pyrolite composition. Further, the calculated seismic velocity and density values agree well with those observed in the upper mantle and mantle transition region within the uncertainties attached to these calculations and observations. Pyrolite or peridotite compositions are thus most likely to represent the composition of the mantle above 670 km depth, although some degrees of chemical heterogeneity may exist in the transition region. The observed sharp discontinuous increases of seismic velocities and density at this depth may be attributed either to the phase transformation to a perovskite-bearing assemblage in pyrolite or to chemical composition changes. Density profiles in subducted slabs have been calculated along adequate geotherms assuming that the slabs are composed of the former oceanic crust underlain by a thicker harzburgitic layer. It is shown that the former oceanic crust is substantially less dense than the surrounding pyrolite mantle at depths below 670 km, while it is denser than pyrolite in the upper mantle and the transition region. The subducted former oceanic crust may be trapped in this region, forming a geochemically enriched layer at the upper mantle-lower mantle boundary. Thick and cool slabs may penetrate into the lower mantle, but the chemically derived buoyancy may result in strong deformation and formation of megalith structures around the 670 km seismic discontinuity. These structures are consistent with those detected by recent seismic tomography studies for subduction zones.  相似文献   

10.
To calculate accurately the pressure interval and mineral proportions (i.e. yields) across the olivine to wadsleyite and wadsleyite to ringwoodite transformations requires a detailed knowledge of the non-ideality of Fe-Mg mixing in these (Mg,Fe)2SiO4 solid solutions. In order to constrain the activity-composition relations that describe non-ideal mixing, Fe-Mg partitioning experiments have been conducted between magnesiowüstite and (Mg,Fe)2SiO4 olivine, wadsleyite and ringwoodite as a function of pressure at 1400°C. Using known activity-composition relations for magnesiowüstite the corresponding relations for the three polymorphs were determined from the partitioning data. In all experiments the presence of metallic iron ensured redox conditions compatible with the Earth’s transition zone. The non-ideality of the (Mg,Fe)2SiO4 solid solutions was found to decrease in the order WwadsleyiteFeMg>WringwooditeFeMg>WolivineFeMg. These partitioning data were used, along with published phase equilibria measurements for the Mg2SiO4 and Fe2SiO4 end-member transformations, to produce an internally consistent thermodynamic model for the Mg2SiO4-Fe2SiO4 system at 1400°C. Using this model the pressure interval of the olivine to wadsleyite transformation is calculated to be significantly smaller than previous determinations. By combining these results with Fe-Mg partitioning data for garnet, the widths of transition zone phase transformations in a peridotite composition were calculated. The olivine to wadsleyite transformation at 1400°C in dry peridotite was found to occur over a pressure interval equivalent to approximately 6 km depth and the mineral yields were found to vary almost linearly with depth across the transformation. This transformation is likely to be even sharper at higher temperatures or could be significantly broader in wet mantle or in regions with a significant vertical component of mantle flow. The entire range of estimated widths for the 410 km discontinuity (4-35 km) could, therefore, be explained by the olivine to wadsleyite transformation in a peridotite composition over a range of quite plausible mantle temperatures and H2O contents. The wadsleyite to ringwoodite transformation in peridotite mantle was calculated to take place over an interval of 20 km at 1400°C. This transformation yield was also found to be near linear.  相似文献   

11.
Depletion of Nb relative to K and La is characteristic of lavas in subduction-related magmatic arcs, as distinct from mid-ocean ridge basalts. Nb depletion is also characteristic of the continental crust. This and other geochemical similarities between the continental crust and high-Mg# andesite magmas found in arcs suggests that the continental crust may have formed by accretion of andesites. Previous studies have shown that the major element characteristics of high-Mg# andesites may be produced by melt/rock reaction in the upper mantle. In this paper, new data on partitioning of K, Nb, La and Ce between garnet, orthopyroxene and clinopyroxene in mantle xenoliths, and on partitioning of Nb and La between orthopyroxene and liquid, show that garnet and orthopyroxene have Nb crystal/liquid distribution coefficients which are much larger than those of K and La. Similar fractionations of Nb from K and La are expected in spinel and olivine. For this reason, reactions between migrating melt and large masses of mantle peridotite can produce substantial depletion of Nb in derivative liquids. Modeling shows that reaction between ascending, mantle-derived melts and mantle peridotite is a viable mechanism for producing the trace element characteristics of high-Mg# andesite magmas and the continental crust.

Alternatively, small-degree melts of metabasalt and/or metasediment in the subducting slab may leave rutile in their residue, and will thus have large Nb depletions relative to K and La [1]. Slab melts are too rich in light rare earth elements and other incompatible elements, and too poor in compatible elements, to be parental to arc magmas. However, ascending slab melts may be modified by reaction with the mantle. Our new data permit modeling of the trace element effects of reaction between small-degree melts of the slab and mantle peridotite. Modeling shows that this type of reaction is also a viable mechanism for producing the trace element characteristics of high-Mg# andesites and the continental crust. These findings, in combination with previous results, suggest that melt/rock reaction in the upper mantle has been an important process in forming the continental crust and mantle lithosphere.  相似文献   


12.
上地幔橄榄岩流变性研究新进展及其地球动力学意义   总被引:2,自引:1,他引:2  
本文系深部地幔流性研究进展综述文章之一,重点介绍了近年来国际地球物理学界在涉及橄榄岩上地幔流变性的下述三方面取得的进展:(1)化学环境因素对橄榄石高温塑性的影响;(2)高温高压下水在橄榄石晶体中的溶解度和赋存状态;(3)橄榄石多晶体的变形机制转变,并对由此得出的地球动力学意义作了讨论。  相似文献   

13.
Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are horizontal, result in apparent isotropy for vertically propagating SKS waves, but strong anisotropy for horizontally propagating surface waves.  相似文献   

14.
Melting experiments on a high-magnesian andesite   总被引:1,自引:0,他引:1  
Melting experiments were conducted on a high-magnesian bronzite olivine andesite (Teraga-Ike andesite) which is considered to be a primary andesite. The high-magnesian andesite magma is in equilibrium with both olivine and orthopyroxene at about 15.5 kbar and 1080°C under H2O-saturated conditions and at lower pressure and higher temperature under H2O-undersaturated conditions. This suggests that high-magnesian andesites could be generated by the partial melting of upper mantle peridotite containing a small amount of H2O.  相似文献   

15.
The pressure-temperature conditions and the variations of both density and bulk sound velocity in the vicinity of the 650-km discontinuity have been compared with those calculated for the phase transitions in both the olivine and the pyroxene-garnet components of the mantle material. These studies suggest that the mantle below about 650 km is composed primarily of perovskite phase, as distinct from the olivine-rich upper mantle. Thus, the “650-km” discontinuity is not likely to be associated with any of the equilibrium phase boundaries observed in olivine, pyroxene, and garnet, and is proposed instead to be a chemical change. It is suggested that the following factors may be responsible for chemical separation: the pyroxene-garnet component transforms to much denser phases possessing the ilmenite and perovskite structures before the breakdown of the spinel phase into a mixture of perovskite plus rocksalt phases. The perovskite phase is also much denser than the rocksalt phase and the two phases may not form a gravitationally stable mixture. Thus, the denser phases may tend to sink to or stay at the deep part of the mantle, causing chemical separation. Possible separation processes are discussed and the supporting observations are presented.  相似文献   

16.
The Cenozoic basaltic province of the Vogelsberg area (central Germany) is mainly composed of intercalated olivine to quartz tholeiites and near-primary nephelinites to basanites. The inferred mantle source for the alkaline and tholeiitic rocks is asthenospheric metasomatized garnet peridotite containing some amphibole as the main hydrous phase. Trace element modelling indicates 2 to 3% partial melting for the alkaline rocks and 5 to 7% partial melting for the olivine tholeiites. Incompatible trace element abundances and ratios as well as Nd and Sr radiogenic isotope compositions lie between plume compositions and enriched mantle compositions and are similar to those measured in Ocean Island Basalts (OIB) and the Central European Volcanic Province elsewhere. The mafic olivine tholeiites have similar Ba/Nb, Ba/La and Nd–Sr isotope ratios to the alkaline rocks indicating derivation of both magma types from chemically comparable mantle sources. However, Zr/Nb ratios are slightly higher in olivine tholeiites than in basanites reflecting some fractionation of Zr relative to Nb during partial melting. Quartz tholeiites have higher Ba/Nb, Zr/Nb, La/Nb, but lower Ce/Pb ratios and lower Nd isotope compositions than the alkaline rocks which can be explained by interaction of the basaltic melt with lower (granulite facies) crustal material or partial melts thereof during stagnation within the lower crust. It appears most likely that upwelling of hot, asthenospheric material results in the generation of primitive alkaline rocks at the base of the lithosphere at depths of 75–90 km. Lithospheric extension together with minor plume activity and probably lower lithosphere erosion induced melting of shallower heterogenous upper mantle generating a spectrum of olivine tholeiitic melts. These olivine tholeiitic rocks evolved via crystal fractionation and probably limited contamination to quartz tholeiites.  相似文献   

17.
High-resolution P wave tomography shows that the subducting Pacific slab is stagnant in the mantle transition zone and forms a big mantle wedge beneath eastern China. The Mg isotopic investigation of large numbers of mantle-derived volcanic rocks from eastern China has revealed that carbonates carried by the subducted slab have been recycled into the upper mantle and formed carbonated peridotite overlying the mantle transition zone, which becomes the sources of various basalts. These basalts display light Mg isotopic compositions(δ26 Mg = –0.60‰ to –0.30‰) and relatively low87 Sr/86 Sr ratios(0.70314–0.70564) with ages ranging from 106 Ma to Quaternary, suggesting that their mantle source had been hybridized by recycled magnesite with minor dolomite and their initial melting occurred at 300-360 km in depth. Therefore, the carbonate metasomatism of their mantle source should have occurred at the depth larger than 360 km, which means that the subducted slab should be stagnant in the mantle transition zone forming the big mantle wedge before 106 Ma. This timing supports the rollback model of subducting slab to form the big mantle wedge. Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom(180–120 km in depth) of cratonic lithosphere in North China, the carbonated silicate melts should have 25–18 wt% CO2 contents, with lower Si O2 and Al2 O3 contents, and higher Ca O/Al2 O3 values, similar to those of nephelinites and basanites, and have higher εNdvalues(2 to 6). The carbonatited silicate melts migrated upward and metasomatized the overlying lithospheric mantle, resulting in carbonated peridotite in the bottom of continental lithosphere beneath eastern China. As the craton lithospheric geotherm intersects the solidus of carbonated peridotite at 130 km in depth, the carbonated peridotite in the bottom of cratonic lithosphere should be partially melted, thus its physical characters are similar to the asthenosphere and it could be easily replaced by convective mantle. The newly formed carbonated silicate melts will migrate upward and metasomatize the overlying lithospheric mantle. Similarly, such metasomatism and partial melting processes repeat, and as a result the cratonic lithosphere in North China would be thinning and the carbonated silicate partial melts will be transformed to high-Si O2 alkali basalts with lower εNdvalues(to-2). As the lithospheric thinning goes on,initial melting depth of carbonated peridotite must decrease from 130 km to close 70 km, because the craton geotherm changed to approach oceanic lithosphere geotherm along with lithospheric thinning of the North China craton. Consequently, the interaction between carbonated silicate melt and cratonic lithosphere is a possible mechanism for lithosphere thinning of the North China craton during the late Cretaceous and Cenozoic. Based on the age statistics of low δ26 Mg basalts in eastern China, the lithospheric thinning processes caused by carbonated metasomatism and partial melting in eastern China are limited in a timespan from 106 to25 Ma, but increased quickly after 25 Ma. Therefore, there are two peak times for the lithospheric thinning of the North China craton: the first peak in 135-115 Ma simultaneously with the cratonic destruction, and the second peak caused by interaction between carbonated silicate melt and lithosphere mainly after 25 Ma. The later decreased the lithospheric thickness to about70 km in the eastern part of North China craton.  相似文献   

18.
Melting relations of a glassy magnesian olivine tholeiite from the FAMOUS area have been studied within the pressure range 1 atm to 15 kbar. From 1 atm to 10 kbar, olivine is the liquidus phase, followed by plagioclase and Ca-rich clinopyroxene. Above 10 kbar, Ca-rich clinopyroxene appears on the liquidus, followed by orthopyroxene and spinel. Near 10 kbar, olivine, orthopyroxene, clinopyroxene, spinel and plagioclase crystallize within 10°C of the liquidus. This indicates that a liquid of this magnesian olivine tholeiite composition could coexist with mantle peridotite at about 10 kbar. This result is in agreement with the geochemistry of Ni; the Ni concentration of the studied sample corresponds to the theoretical concentration in a primary magma [14,15].These data suggest that at least some magnesian mid-oceanic ridge basalts (MORBs) could be primary melts segregated from the mantle at depths near the transition zone between plagioclase lherzolite and spinel lherzolite (about 10 kbar). Based on this model, the residual mantle after extraction of MORBs should be lherzolite, not harzburgite.High-pressure (7–10 kbar) fractionation models involving olivine, plagioclase and clinopyroxene, which have been proposed by several workers (e.g. [36]) to explain the varieties of MORBs, were re-emphasized based on this melting study. The rare occurrence of clinopyroxene as a phenocryst phase in MORBs is explained by precipitation in a magma chamber at high pressure, or by dissolution of clinopyroxene formed earlier at high pressure.  相似文献   

19.
A review of experimental data for systems, pertaining to anhydrous fertile garnet-lherzolite shows strong convergence in the liquidus and solidus temperatures for the range 6.5–15 GPa. These can converge either to a common temperature or to temperatures which differ by only ~ 100°C. The major-element composition of magmas generated by even minor degrees of partial melting may be similar to the primordial bulk silicate Earth composition in an upper-mantle stratigraphic column extending over 160 km in depth.The convergence of the solidus and liquidus temperatures is a consequence of the highly variable dTdP of the fusion curves for minerals which crystallize in peridotite systems. In particular, dTdP for the forsterite fusion curve is much less than that for diopside and garnet. Whether or not the solidus and liquidus intersect, the liquidus mineralogy for undepleted garnet-lherzolite compositions changes from olivine at low pressures to pyroxene, garnet, or a complex pyroxene-garnet solid solution at pressures in excess of 10–15 GPa. Geochemical data for the earliest Archean komatiites are consistent with an upper-mantle phase diagram having garnet as a liquidus phase for garnet-lherzolite compositions at high pressures. All estimates of the anhydrous solidus and liquidus for the range 10–15 GPa are consistent with silicate liquid compressibility data, which indicate that olivine may be neutrally buoyant in ultramafic magmas at these pressures.  相似文献   

20.
Melting temperatures of the silicate fraction of the Allende CV3 meteorite, at upper mantle pressures, are several hundred degrees lower than that of fertile peridotite xenoliths or ‘pyrolite’. If the Earth accreted from material similar to chondrites, then deep mantle melting could have occurred with a relatively modest heat budget. It is concluded that initial chemical composition is an important variable in realistic magma ocean models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号