首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 743 毫秒
1.
为了寻求低成本、结构简单、无污染、输出电压高的波浪能发电系统,本文提出了一种新型点吸收式波浪能摩擦纳米发电系统,该系统包括振荡浮子、具有纳米摩擦层的连杆套筒和固定在海底的支架。首先利用AQWA软件对该装置进行水动力仿真得出在波浪周期为5 s,不同波浪高度时浮子对应的振荡位移情况,然后进一步建立数学仿真模型,分析了垂直滑动摩擦纳米发电机的开路电压、转移电荷量、电流以及电容随位移和时间的关系,得到了外接不同负载时发电机的最大功率和最大功率对应的电压电流情况。通过数据分析发现:随着波浪高度和纳米摩擦层绝对摩擦位移的增加,电能输出稳定后的最优匹配电阻在109Ω左右,此时摩擦纳米发电机的发电性能最佳,对应波浪高度为0.5 m时最大发电功率为173.6 W。  相似文献   

2.
为了解决振动水柱式波浪能转换装置收集多向波浪问题,本文设计了半球形多向聚合波道振荡水柱气室结构,以适合远海单点波浪能采集和发电。在规则波正向入射条件下,基于流体仿真分析软件(FLUENT)、流体动力学连续性假设和粘性不可压缩流体动量守恒的运动方程(Navier-Stokes方程)建立半球形振荡气室和三维数值波浪水槽模型。仿真结果表明:增设气室后壁,合理设计波道开口角度实现多向迎波捕获波浪能,优化前壁形状可降低波浪触底反射带来的能量耗散,同时提高了气室内空气压强和出气口速度,有效提升波浪能俘获效率,为后续发电的二次能量转换提供高效的空气动力。  相似文献   

3.
振荡水柱(Oscillation Water Column,OWC)是近年来发展较快的波浪能采集技术,该装置主要由箱体、振荡水柱和压缩空气柱组成,而波浪在气室内产生的压强对能量转换效率等起到决定作用。结合三维侧向开口的振荡水柱波能转换装置,基于线性波理论,采用三维Green函数法建立了气室内水气动力学性能的空气压强理论计算模型,利用多维切比雪夫(Chebyshev)多项式求解,计算结果精度高,能够准确表达波浪和结构设计参数对气室内压强影响。依据理论计算模型分析了波浪周期、波长、吃水深度、入射波幅等参数对气室内压强作用。  相似文献   

4.
振荡水柱式(Oscillation Water Column,简称OWC)波浪能采集装置具有结构简单、稳定性好、海洋环境适应性强等优点。为了提高该装置波能采集效率,研究波浪进入气室的振荡水柱气动特性与装置结构参数关系,为系统设计提供理论基础。以振荡水柱式波能转换理论计算分析为基础,采用Simulink软件分别建立前墙处入口压强Pq求解模型、装置气室内压强Po求解模型以及装置内振荡水柱运动方程y求解模型,研究目的是综合分析振荡水柱气室内压强与气室结构、波浪流体动力学参数之间的变化关系。  相似文献   

5.
本文基于前期对振荡浮子式波能发电装置的研究,提出一种与采油平台结合的新型波浪能发电装置,并采用水动力学软件Ansys-AQWA进行数值模拟,计算了不同波况条件下的发电装置受力与运动响应。分析发电装置稳定性和输出功率表明:在振荡浮子与采油平台导管架相结合的状态下,装置运行正常,平台稳定,波能利用率并未受到显著影响,初步验证了设计的可行性。通过频域计算,发现装置发电理想波频区间为1.2~2.0Hz;通过时域计算,发现浮子垂向平均最大位移、最大速度、最大加速度与波浪波高成正相关,垂向平均最大加速度与波浪周期成负相关,垂向平均最大波浪力与波浪周期成正相关,上述成果将为后续研究与试验提供一定的数据支持。  相似文献   

6.
采用计算流体动力学分析(CFD)技术研究离岸式振荡水柱波能转换装置的设计参数优化问题。首先,借助FLUENT软件用户自定义函数功能(UDF)并运用动边界造波及多孔介质消波方法建立基于线性波浪理论的二维数值波浪水槽,然后,将水槽的分析方法应用于振荡水柱气室仿真研究。结果表明:离岸式振荡水柱气室在发生共振时转换效率最高,气室内液面升降幅度随着波能转换装置的前墙入水深度、厚度以及气室宽度的减小而产生较明显的增大;相对于前墙尺寸,气室宽度对波能转换装置的能量转换功率影响较大。  相似文献   

7.
振荡水柱式波能发电系统中波能转换主要结构气室能将入射波能转换为往复振荡的空气动能从而实现能量一次转换,该过程的气室压强研究对发电系统设计具有重要意义。因此针对"引浪板"和"引浪通道"的三维侧向开口固定式振荡水柱波能转换系统,采用三维Green函数法建立了气室内水气动力学性能的压缩空气压强理论计算模型。计算时为了满足压强与速度连续条件,响应脉动源与扰动脉动源两者在交界面上需要相互匹配;同时为了能够精确快速地求解三维Green函数,采用了多维切比雪夫(Chebyshev)多项式和渐近展开式快速近似计算方法。计算结果表明所用方法简单可靠,同时计算结果可应用于振荡水柱波能发电系统性能预测及相关问题研究。  相似文献   

8.
振荡水柱装置是目前世界上应用最为广泛的岸式波能发电装置.气室作为该装置的主要结构可将入射波浪的能量转换为往复振荡的气流动能,是完成能量一次转换的关键结构.为了建立用于考察入射波浪、气室内的波面振荡变化,准确预测气室工作性能的三维数值模拟模型,构建了基于VOF模型的三维数值波浪水槽.通过与物理模型试验的结果对比发现,该模...  相似文献   

9.
基于VOF模型的OWC气室波浪场数值分析   总被引:1,自引:0,他引:1  
近年来,振荡水柱形式在波能转换装置中得到了广泛应用,由于波况不同,需对气室加以研究并对其形状参量进行优化,从而使空气流速和能量转换达到最大值.利用基于VOF模型建立二维数值波浪水槽,将数值计算的振荡水柱在气室内的升沉运动与物理模型试验进行比较,验证其正确性,并将OWC气室的研究手段予以推广.  相似文献   

10.
后弯管式波力发电装置作为一种漂浮式振荡水柱式装置,具有可靠性强、安装维护方便、工作地点灵活的特点。本文在前人研究基础上,以10kW级后弯管式漂浮型发电装置为研究对象,以装置的水动力学性能为主要研究内容,以气室内相对波高作为主要表征参数,通过断面水槽水工物理模型试验,考察了气室内水柱振荡幅度与入射波波高和入射波周期之间的关系,分析了气室完全开敞、输气管添加负载以及弯管横管长度对气室内水柱振荡的影响,为进一步的大功率装置设计与试验提供了理论依据。  相似文献   

11.
Floating oscillating-bodies constitute an important class of offshore wave energy converters. The testing of their power take-off equipment (PTO) (high-pressure hydraulics, linear electrical generator or other) under realistically simulated sea conditions is usually regarded as a major task. A laboratory rig, consisting of a U-tube enclosing an oscillating column of water driven by a time-varying air-pressure, was devised to simulate the hydrodynamics of an oscillating buoy absorbing energy from sea waves, especially the inertia and the resonant frequency of the oscillating body. The PTO force is applied (by means of a piston) on one of the ends of the U-tube oscillating water column, whereas the other end is subject to a controlled time-varying air pressure. This is found to provide a reasonably realistic way of testing the PTO system (including its control) at an adequate scale (say about 1:5 to 1:4), which would avoid the use of a much more expensive experimental facility (very large wave tank) or testing in real wind-generated sea-waves. The matching conditions that the U-tube geometry and the driving time-varying air pressure must meet to ensure an adequate simulation are derived. These conditions leave some freedom to the U-tube rig designer and operator, allowing practical and engineering issues to be taken into account.  相似文献   

12.
The motions and time-mean horizontal drift forces of floating backward-bent duct buoy wave energy absorbers in regular waves are calculated taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column within the scope of the linear wave theory. The present numerical results show that the time-mean drift forces of backward-bent duct buoys are in the reverse direction of propagation of the incident waves over specific frequency ranges as found by McCormick through his experimental work. The drift force has been calculated by the near-field method. A brief discussion on Maruo’s formula which shows that the time-mean drift force must be in the direction of propagation of the incident waves, has also been presented.  相似文献   

13.
A pile-supported OWC breakwater is a novel marine structure in which an oscillating water column (OWC) is integrated into a pile-supported breakwater, with a dual function: generating carbon-free energy and providing shelter for port activities by limiting wave transmission. In this work we investigate the hydrodynamics of this novel structure by means of an analytical model based on linear wave theory and matched eigenfunction expansion method. A local increase in the back-wall draft is adopted as an effective strategy to enhance wave power extraction and reduce wave transmission. The effects of chamber breadth, wall draft and air chamber volume on the hydrodynamic performance are examined in detail. We find that optimizing power take-off (PTO) damping for maximum power leads to both satisfactory power extraction and wave transmission, whereas optimizing for minimum wave transmission penalizes power extraction excessively; the former is, therefore, preferable. An appropriate large enough air chamber volume can enhance the bandwidth of high extraction efficiency through the air compressibility effect, with minimum repercussions for wave transmission. Meanwhile, the air chamber volume is found to be not large enough for the air compressibility effect to be relevant at engineering scales. Finally, a two-level practical optimization strategy on PTO damping is adopted. We prove that this strategy yields similar wave power extraction and wave transmission as the ideal optimization approach.  相似文献   

14.
Investigation on the Oscillating Buoy Wave Power Device   总被引:4,自引:0,他引:4  
SU  Yongling 《中国海洋工程》2002,16(1):141-149
An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic device. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture vvidth ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the most expensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a nu-merical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model test is carried out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC and that the OD is a promising wave power device.  相似文献   

15.
The motion and the drift force of a floating OWC (oscillating water column) wave energy device in regular waves are studied taking account of the oscillating surface-pressure due to the pressure drop across the duct of the air chamber. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine-type Green function while the outer problem with the Kelvin-type Green function. The added mass, wave damping and excitation coefficients as well as the motion and drift force of the OWC device are calculated for various values of parameter related to the pressure drop.  相似文献   

16.
The paper presents a concept of a wave energy converter and the numerical model to calculate the hydrodynamic responses in waves and the power produced by the power take off system. The system consists of an asymmetric floater with an interior U-tank partially filled with water and two lateral air chambers connected by a duct. The motion of the U-shaped oscillating water column, mainly induced by the rolling of the floater, forces the air through the duct where a Wells turbine is installed to absorb the wave energy.The wave-floater hydrodynamics is calculated with a Green's function panel method, while the oscillating water column motions hydro-mechanics are derived from the one-dimensional Euler's equation. The dynamics of the Wells turbine is realistically represented by one additional differential equation on the unknown air pressure fluctuation. This equation is derived assuming small amplitude motions of the water column and assuming the linear isentropic relation is valid for the air thermodynamics in the air chambers. The Wells turbine is characterized by a drastic drop of efficiency above a critical pressure value due to stalling on the blades. The effect of a by-pass valve to prevent stalling is introduced in the numerical model in a simplistic way. The numerical model is implemented and tested for a wave energy converter with a displacement of 1150 t, including 490 t for the interior water column, and an installed turbine with 2.3 m of diameter. An analysis of the influence of changing different design parameters on the system efficiency is also presented.  相似文献   

17.
A structure scheme of a pile-based breakwater with integrated oscillating water column(OWC) energy conversion chamber was proposed, and four structure forms had been designed. Based on the physical test, the variations of the reflected wave height, the transmitted wave height, the air velocity at the outlet of the chamber, the air pressure and the wave height in the air chamber were studied under the conditions of different wave heights, periods, with or without elliptical front wall and the baffles on both sides of the chamber. Moreover, based on the results, the changes and relationship between the wave-eliminating effect and energy conversion effect of the scheme were analyzed. In general, it turns out, the transmission coefficients of the four structure forms are kept below 0.5. Furthermore, the transmission coefficients of the structural forms G2, G3, and G4 were all smaller than 0.4, and it is only 0.1 at its smallest. Thereinto, in general, the structure form G4 has the best wave-eliminating and energy conversion performance. At the same time, when the wave steepness is 0.066, the energy conversion and wave dissipation effect of the four structure forms is the best. The research results could be provided as the reference for the design structure selection of pile-based breakwater with integrated OWC energy conversion chamber.  相似文献   

18.
In order to study the effects of coastline on wave power absorption, we describe here a linearized theory of an oscillating water column (OWC) installed on a straight coast. The sea depth is assumed to be constant and the coast is a vertical cliff. The column is a vertical circular cylinder half embedded in the cliff and open on the seaside. Forced by incident waves from any direction, the water surface inside pushes the dry air above through a Wells turbine system to generate power. Carrying out the linearized theories of radiation and diffraction analytically, we calculate the coefficients of apparent mass and radiation damping, and the chamber pressure. Optimum absorption efficiency is examined under the constraint of constant chamber volume. Results are compared with a parallel study of an OWC installed either offshore or at the tip of a thin breakwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号