首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
【研究目的】 全球变暖是当今国际社会共同面临的严峻挑战,碳中和与绿色低碳转型作为应对这一挑战的必由之路,已在全球形成共识。地球系统科学为碳中和目标的实现提供了重要的地学解决方案,中国西北地质调查如何在碳中和战略中找到主攻方向和工作方法是亟需解决的问题。【研究方法】 本文综述了地质工作在碳中和进程中的主要工作方法,统计分析了中国西北在碳中和减排和增汇两大基本途径上的资源优势,提出了碳中和背景下中国西北地质调查服务绿色低碳转型发展的建议。【研究结果】 中国西北地区拥有丰富的天然气、地热能等清洁能源,以及与新能源相关的关键矿产等资源优势:天然气地质资源量约为313991×108 m3,占全国的34.78%;地热能分布广泛、类型丰富,其中青海共和盆地静态干热岩资源总量达8974.74×1018 J;锂、钴、镍和铀矿等清洁能源相关的关键矿产资源均居全国前列,锂矿储量约占全国总储量的60%,钴矿储量约占全国总储量的40%,新疆是中国最大的铀矿生产基地。而且,西北地区生态类型和地表基质层类型丰富,碳库现存量和增汇潜力巨大,同时拥有大量适宜碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)选址和地质储能的优质空间,是中国通过增汇实现碳中和目标的重要节点。【结论】 中国西北地区可为碳减排、碳增汇路径提供有效资源支撑,西北地质调查工作应立足实际,发挥专业优势,在推进天然气资源调查、攻关地热资源开发技术、加强关键矿产全生命周期研究、试点地表基质层与生态地质综合调查、开展CCUS相关的地下空间调查,以及建设碳中和相关的地球系统科学数据库六个方面持续发力,为实现碳中和目标提供重要的地质解决方案,做出应有的贡献。  相似文献   

2.
压缩空气地质储能可为大规模部署风能、太阳能等间歇性清洁能源提供灵活、高效的储能方案,从而促进能源结构转型,加快碳达峰、碳中和战略目标的实现。在介绍压缩空气地质储能概念与分类的基础上,从理论分析、技术方法、经济成本等方面总结了该领域的研究现状与发展趋势,详细叙述了利用盐腔、含水层、枯竭油气田作为储气库的典型储能工程案例及关键参数与经验,分析了压缩空气地质储能在我国的应用前景和不同储气库的特性及其关键影响因素,指出不同类型储气库地质储能的适宜条件,为促进清洁能源可持续开发利用提供科学参考。  相似文献   

3.
王野  陈旸  陈骏 《地学前缘》2024,(2):402-409
岩石有机碳为岩石地层中的有机碳,是地球上重要的碳储库。岩石有机碳的氧化、风化过程向大气排放二氧化碳,是地质碳循环过程的关键环节,对维持地球长尺度碳平衡以及表层环境的长期宜居性有重要意义。近年来,岩石有机碳氧化、风化过程的研究取得了显著发展,相关研究已经从剖面拓展到流域尺度,定量方法也在日益精确。本文系统综述了近些年国内外针对岩石有机碳自身结构性质、风化速率定量方法、控制因素和风化通量统计等问题的研究现状,以期对全球范围内岩石有机碳风化在研究地质碳循环过程中的关键性和当前进展及发展趋势有更加系统性的认识,并对相应的关键性科学问题进行更加深入系统的研究。  相似文献   

4.
李强 《地球学报》2022,43(4):421-424
2020年9月22日, 习近平主席在第七十五届联合国大会一般性辩论上承诺, 中国力争于2030年前达到CO2排放峰值, 努力争取2060年前实现碳中和。中国的碳达峰与碳中和战略, 不仅是全球气候治理、保护地球家园、构建人类命运共同体的重大需求, 也是中国高质量发展、生态文明建设和生态环境综合治理的内在需求。碳中和战略涉及深度社会经济发展转型, 以期实现低碳甚至零碳排放和基于技术变革的增汇目标, 是面向可持续发展的重大机遇。碳酸盐岩是岩溶发育的物质基础, 不但记录着地球历史时期的环境变化, 而且还是地球最大的碳库, 对地球大气和生命演变起到重要的作用。据统计, 现代全球岩溶分布面积2200万km2, 占陆地面积的15%, 其中中国岩溶面积达344万km2, 约占全球岩溶总面积的15.6%。在水-二氧化碳-碳酸盐岩-生物的相互作用下, 岩溶碳循环活跃, 在全球形成0.824 Pg C/a的岩溶碳汇, 约占全球“遗漏汇”的29.4%。鉴于岩溶作用对全球碳循环具有重要的作用和影响, 2021年中国出台的《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》和《国务院关于印发2030年前碳达峰行动方案的通知》均明确提出要巩固提升岩溶碳汇能力。然而, 岩溶碳汇的流域尺度效应及其稳定性机理还不十分清晰, 以至于岩溶碳汇研究存在不确定性问题。为揭示流域尺度岩溶碳汇效应以及岩溶碳汇的稳定性问题, 明确岩溶作用与碳中和的耦合关系, 助力碳达峰、碳中和目标的实现, 《地球学报》组织了“岩溶作用与碳中和”专栏。  相似文献   

5.
王焰新  毛绪美 《地球科学》2011,36(1):163-171
大气中持续增长的CO_2是引起.温室效应.的主要原因.并给全球带来越来越严重的环境问题.消减CO_2是人类共同而临的生存挑战,也是技术难题.在全球碳循环过程中.有多种调节方法可以减少大气中CO_2含量.但目前只有地质储存被认为是可快速实施、见效明显的CO_2减排方式.CO_2流体-岩石相互作川是地质储存的核心科学问题,...  相似文献   

6.
2030年前实现碳达峰,2060年前实现碳中和是2020年我国提出的国家重大战略目标。以当前我国的二氧化碳排放及能源结构现状,要实现这一伟大目标形势十分严峻。介绍了全球碳循环过程,阐述了碳源与碳汇对于大气CO2浓度的贡献,从减源与增汇2个方面,初步分析了地质调查在推动碳达峰与碳中和目标实现中的作用与可能的贡献,并提出了地质解决路径。生态碳汇固然非常重要,但仍不能完全消除人为CO2排放,且其具有不确定性,因此,需要充分发挥地质调查作用、挖掘地质碳汇潜力,使其成为实现碳中和目标过程中不可或缺的有力支撑。  相似文献   

7.
煤炭资源在我国能源结构中仍处于主体地位,但煤炭工业发展面临着“碳达峰碳中和”的新挑战。积极发展煤炭开发地下空间储能技术,是推动能源利用低碳化和清洁化的有效手段,也是保证我国能源战略安全的关键措施。结合当前储能技术,探讨了煤炭开发地下空间的利用现状,围绕利用煤炭开发地下空间抽水蓄能、热储能、压缩空气储能、电化学储能、生物质储能等储能新技术,重点阐述废弃矿井不同能源类型的储能理念及方式,系统分析储能过程中面临的地质保障关键技术难题。煤炭开发地下空间储能新技术总体思路为:利用煤炭开发地下空间所具有的低位势能差,将其用作梯级储水库(抽水蓄能);或直接将其用作储质、储能空间(热储能、压缩空气储能、电化学储能、生物质储能),既可提升煤炭开发地下空间资源的开发利用率,又可避免土地资源浪费,尽量降低对生态环境的扰动。虽然煤炭开发地下空间可作为大规模储能库,但其开发利用过程仍存在一些亟待解决的地质问题以及地质保障技术。主要包括:(1)地质条件与选址适宜性分析和安全性评价,即对储能空间的地质因素进行岩土工程性质和环境地质条件的系统研究,查明储能空间稳定性主控因素及其权重,构建选址指标体系与评价方法,重点查...  相似文献   

8.
俯冲带背景下,碳在促进岩石熔融、岩浆起源和演化、地球深部的岩石学及动力学等过程中扮演的角色尤为重要。碳的存在形式是由温度、压力、氧逸度以及溶流体的性质等条件控制的,这些以不同形式存在的碳随板块俯冲到达地球深部,而后又通过火山作用等脱气过程被返回地表,便形成了地球深部碳循环过程。固碳和脱碳反应是影响碳在固体地球、海洋和大气圈转换的主要反应。碳的固定包括硅酸盐风化作用、玄武质洋壳的热液交代、海沟外隆的蛇纹石化、有机碳的埋藏和逆风化作用等过程;碳的运输包括沉积成因和交代成因沉积物的俯冲过程;当俯冲碳被输送到地球内部时,它可能被保留在板块内,或者转移到地幔楔中,又或再被循环到地球深部,这将取决于特定构造环境的温压条件和氧化还原状态等。碳的排放包括火山作用、弧前扩散脱气、溶解脱碳、变质反应脱碳和熔融脱碳等过程,这些过程将俯冲下去的碳再一次返回大气,能够平衡俯冲带的碳输入。本文系统地总结了地表及地球深部碳的固定、运输、转移和排放过程中碳的存在形式、碳的迁移和变化以及相关碳通量计算值,分析了目前碳通量差异的原因并阐述了今后需要深入研究的一些关键科学问题。另外,工业革命后,人为成因的CO2<...  相似文献   

9.
俯冲带作为联系地表和地球深部系统的纽带,不仅是将地表碳带入地球深部的主要通道,也是地表物质和地球深部物质发生交换的重要场所。俯冲作用可以将地表碳以有机碳或无机碳酸盐矿物等形式带入地球深部,再通过火山作用或去气作用返回到地表系统。俯冲带深部碳循环控制着地表碳通量变化,对于研究全球气候变化和地球宜居环境具有重要意义。本文结合前人的相关研究成果,综合探讨了俯冲带的脱碳机制及固碳作用过程。俯冲带脱碳机制主要有变质反应脱碳、流体溶解脱碳和熔融作用脱碳。从俯冲板块释放的含碳流体不一定都会迁移返回地表,有一部分含碳流体在迁移演化过程中会和围岩发生反应,形成不易迁移的其他含碳相(碳酸盐、石墨或金刚石)而重新固存在俯冲板块以及上覆地幔楔中(固碳作用),进而影响碳在不同储库中的含量变化,在计算俯冲带释放碳通量时需要考虑这一过程的影响。  相似文献   

10.
经济社会快速发展需要更多的能源与资源保障,地球深部资源与能源极其丰富。“向地球深部进军”是经济社会发展需要与资源勘查开发技术、经济效益成本承受能力相匹配的必然发展趋势。随着“碳达峰、碳中和”战略目标的提出,绿色低碳高质量发展成为时代发展的主旋律。为满足能源、资源保障和生态环境保护等重大需求,加大清洁能源勘探开发力度、提高碳封存能力、强化地质储能研究等显得尤为重要。深部水文地质作用与此息息相关,亟待重视和加强研究。本文采用文献分析法,通过学科发展历程与热点焦点问题的综合对比研究,对深部地下水分布与循环理论研究、深部地下水地质作用下地热与锂资源成藏、深部地热-干热岩与页岩气等清洁能源开发、深部咸水层CO2地质封存、地质储能等方面涉及的深部水文地质研究现状和未来趋势进行了分析总结,认为深部水文地质在高温高压条件下地下水循环动力机制、物质能量转换过程、水岩相互作用、成热成藏机理和勘查监测技术精准度等方面尚需深入系统的研究,而储层非均质性刻画、热源机制、深部资源能源可持续开发技术、人工干预下深部资源环境演变特征、水力压裂诱发地震以及断层对流体触发的敏感性和触发过程演变等是未来应给予重点关注的关键性问题。  相似文献   

11.
In the context of global climate change, geosciences provide an important geological solution to achieve the goal of carbon neutrality, China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality. This paper discusses the main problems, opportunities, and challenges that can be solved by the participation of geosciences in carbon neutrality, as well as China’s response to them. The main scientific problems involved and the geological work carried out mainly fall into three categories: (1) Carbon emission reduction technology (natural gas hydrate, geothermal, hot dry rock, nuclear energy, hydropower, wind energy, solar energy, hydrogen energy); (2) carbon sequestration technology (carbon capture and storage, underground space utilization); (3) key minerals needed to support carbon neutralization (raw materials for energy transformation, carbon reduction technology). Therefore, geosciences and geological technologies are needed: First, actively participate in the development of green energy such as natural gas, geothermal energy, hydropower, hot dry rock, and key energy minerals, and develop exploration and exploitation technologies such as geothermal energy and natural gas; the second is to do a good job in geological support for new energy site selection, carry out an in-depth study on geotechnical feasibility and mitigation measures, and form the basis of relevant economic decisions to reduce costs and prevent geological disasters; the third is to develop and coordinate relevant departments of geosciences, organize and carry out strategic research on natural resources, carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory, and coordinate frontier scientific information and advanced technological tools of various disciplines. The goal of carbon neutrality provides new opportunities and challenges for geosciences research. In the future, it is necessary to provide theoretical and technical support from various aspects, enhance the ability of climate adaptation, and support the realization of the goal of carbon peaking and carbon neutrality.  相似文献   

12.
《China Geology》2021,4(4):720-746
Climate change is a common problem in human society. The Chinese government promises to peak carbon dioxide emissions by 2030 and strives to achieve carbon neutralization by 2060. The proposal of the goal of carbon peak and carbon neutralization has led China into the era of climate economy and set off a green change with both opportunities and challenges. On the basis of expounding the objectives and specific connotation of China’s carbon peak and carbon neutralization, this paper systematically discusses the main implementation path and the prospect of China’s carbon peak and carbon neutralization. China’s path to realizing carbon neutralization includes four directions: (1) in terms of carbon dioxide emission control: energy transformation path, energy conservation, and emission reduction path; (2) for increasing carbon sink: carbon capture, utilization, and storage path, ecological governance, and land greening path; (3) in key technology development: zero-carbon utilization, coal new energy coupling, carbon capture utilization and storage (CCUS), energy storage technology and other key technology paths required to achieve carbon peak and carbon neutralization; (4) from the angle of policy development: Formulate legal guarantees for the government to promote the carbon trading market; Formulate carbon emission standards for enterprises and increase publicity and education for individuals and society. Based on practicing the goal and path of carbon peak and carbon neutralization, China will vigorously develop low carbon and circular economy and promote green and high-quality economic development; speed up to enter the era of fossil resources and promoting energy transformation; accelerate the integrated innovation of green and low-carbon technologies and promote carbon neutrality.©2021 China Geology Editorial Office.  相似文献   

13.
Mineral trapping is one of the safest ways to store CO2 underground as C will be immobilized in a solid phase. Carbon dioxide will be, therefore, sequestered for geological periods of time, helping to diminish greenhouse gas emissions and mitigate global warming. Although mineral trapping is considered a fairly long process, owing to the existence of kinetic barriers for mineral precipitation, it has been demonstrated both experimentally and by numerical modeling. Here the results of experimental and numerical modeling studies performed in sandstones of the saline aquifer of the Rio Bonito Formation, Paraná Basin, are presented. The Rio Bonito Formation consists of paralic sandstones deposited in the intracratonic Paraná Basin, southern Brazil, during the Permian (Artinskian–Kungurian). These rocks have the largest potential for CO2 storage because of their appropriated reservoir quality, depth and proximity to the most important stationary CO2 sources in Brazil. Here it is suggested that CO2 can be permanently stored as carbonates as CO2 reacts with rocks of the Rio Bonito Formation and forms CaCO3 at temperatures and pressures similar to those encountered for CO2 storage in geological formations. Results of this work will be useful for studies of partitioning mechanisms for C trapping in CO2 storage programs.  相似文献   

14.
煤基碳排放构成了中国碳排放总量中最重要的部分,做好煤基碳减排和煤炭高效洁净低碳化利用是实现“碳中和”国家目标的重要途径,碳中和背景下的煤地质学发展值得关注。系统评述与碳中和相关的煤地质学研究领域,分析煤地质学在碳中和研究与工程实践中的作用和应用前景,探讨碳中和背景下煤地质学的重要发展方向。取得以下认识:推进清洁煤地质研究、服务煤的高效洁净化燃烧,勘探开发煤系天然气低碳燃料、优化一次能源结构和化石能源结构,开展煤化工资源勘查与开发地质保障研究、推动煤炭的低碳能源转化和新型煤化工产业发展,深化瓦斯地质研究、提高煤矿瓦斯(井下)抽采率、控制煤矿瓦斯的大气排放和泄漏,研究煤层甲烷天然逸散和煤层自燃排放、控制煤层露头的天然排放,发展煤层CO2地质封存与煤层气强化开发(CO2-ECBM)技术、推动碳捕获、利用与封存(CCUS)技术发展及其在火力电厂烟气碳减排中的商业化应用,研究煤炭勘查企业的碳足迹、实现企业净零排放,是与煤地质学紧密相关的碳减排技术路径;其中煤层甲烷与煤系气高效勘探开发、深部煤层CO2-ECBM、煤层露头气体逸散与自燃发火控制、洁净煤地质与煤炭精细勘查是碳中和背景下煤地质学优先发展的重要领域。   相似文献   

15.
Carbon dioxide capture and geological storage (CCGS) is an emerging technology that is increasingly being considered for reducing greenhouse gas emissions to the atmosphere. Deep saline aquifers provide a very large capacity for CO2 storage and, unlike hydrocarbon reservoirs and coal beds, are immediately accessible and are found in all sedimentary basins. Proper understanding of the displacement character of CO2-brine systems at in-situ conditions is essential in ascertaining CO2 injectivity, migration and trapping in the pore space as a residual gas or supercritical fluid, and in assessing the suitability and safety of prospective CO2 storage sites. Because of lack of published data, the authors conducted a program of measuring the relative permeability and other displacement characteristics of CO2-brine systems for sandstone, carbonate and shale formations in central Alberta in western Canada. The tested formations are representative of the in-situ characteristics of deep saline aquifers in compacted on-shore North American sedimentary basins. The results show that the capillary pressure, interfacial tension, relative permeability and other displacements characteristics of CO2-brine systems depend on the in-situ conditions of pressure, temperature and water salinity, and on the pore size distribution of the sedimentary rock. This paper presents a synthesis and interpretation of the results.  相似文献   

16.
Capture and geological sequestration of CO2 from energy production is proposed to help mitigate climate change caused by anthropogenic emissions of CO2 and other greenhouse gases. Performance goals set by the US Department of Energy for CO2 storage permanence include retention of at least 99% of injected CO2 which requires detailed assessments of each potential storage site’s geologic system, including reservoir(s) and seal(s). The objective of this study was to review relevant basin-wide physical and chemical characteristics of geological seals considered for saline reservoir CO2 sequestration in the United States. Results showed that the seal strata can exhibit substantial heterogeneity in the composition, structural, and fluid transport characteristics on a basin scale. Analysis of available field and wellbore core data reveal several common inter-basin features of the seals, including the occurrence of quartz, dolomite, illite, calcite, and glauconite minerals along with structural features containing fractures, faults, and salt structures. In certain localities within the examined basins, some seal strata also serve as source rock for oil and gas production and can be subject to salt intrusions. The regional features identified in this study can help guide modeling, laboratory, and field studies needed to assess local seal performances within the examined basins.  相似文献   

17.
Carbon dioxide enhanced oil recovery (CO2-EOR) has been widely applied to the process of carbon capture, utilization, and storage (CCUS). Here, we investigate CO2–oil–water–rock interactions under reservoir conditions (100 °C and 24 MPa) in order to understand the fluid–rock interactions following termination of a CO2-EOR project. Our experimental results show that CO2-rich fluid remained the active fluid controlling the dissolution–precipitation processes in an oil-undersaturated sandstone reservoir; e.g., the dissolution of feldspar and calcite, and the precipitation of kaolinite as well as solid phases comprising O, Si, Al, Na, C, and Ti. Mineral dissolution rates were reduced in the case that mineral surfaces were coated by oil. Mineral wettability and composition, and oil saturation were the main controls on the exposed surface area of grains, and mineral wettability in particular led to selective dissolution. In addition, the permeability of the reservoir decreased substantially due to the precipitation of kaolinite and solid-phase particles, and due to the clogging of less soluble mineral particles released by the dissolution of K-feldspar and carbonate cement, whereas porosity increased. The results provide insight into potential formation damage resulting from CO2-EOR projects.  相似文献   

18.
《地学前缘(英文版)》2020,11(6):2309-2321
Carbon capture and storage (CCS) has been proposed as a potential technology to mitigate climate change. However, there is currently a huge gap between the current global deployment of this technology and that which will be ultimately required. Whilst CO2 can be captured at any geographic location, storage of CO2 will be constrained by the geological storage potential in the area the CO2 is captured. The geological storage potential can be evaluated at a very high level according to the tectonic setting of the target area. To date, CCS deployment has been restricted to more favourable tectonic settings, such as extensional passive margin and post-rift basins and compressional foreland basins. However, to reach the adequate level of deployment, the potential for CCS of regions in different tectonic settings needs to be explored and assessed worldwide. Surprisingly, the potential of compressional basins for carbon storage has not been universally evaluated according to the global and regional carbon emission distribution. Here, we present an integrated source-to-sink analysis tool that combines comprehensive, open-access information on basin distribution, hydrocarbon resources and CO2 emissions based on geographical information systems (GIS). Compressional settings host some of the most significant hydrocarbon-bearing basins and 36% of inland CO2 emissions but, to date, large-scale CCS facilities in compressional basins are concentrated in North America and the Middle East only. Our source-to-sink tool allows identifying five high-priority regions for prospective CCS development in compressional basins: North America, north-western South America, south-eastern Europe, the western Middle East and western China. We present a study of the characteristics of these areas in terms of CO2 emissions and CO2 storage potential. Additionally, we conduct a detailed case-study analysis of the Sichuan Basin (China), one of the compressional basins with the greatest CO2 storage potential. Our results indicate that compressional basins will have to play a critical role in the future of CCS if this technology is to be implemented worldwide.  相似文献   

19.
Geological storage of carbon dioxide (CO2) is one of the options envisaged for mitigating the environmental consequences of anthropogenic CO2 increases in the atmosphere. The general principle is to capture carbon dioxide at the exhaust of power plants and then to inject the compressed fluid into deep geological formations. Before implementation over large scales, it is necessary to assess the efficiency of the process and its environmental consequences. The goal of this paper is to discuss some environmental mineralogy research perspectives raised by CO2 geological storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号