首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the results of the study of red-sequence (RS) galaxies in 47 galaxy clusters (0.023 < z < 0.047) located in different environments: in the superclusters Hercules and Leo, and in the field, based on the SDSS catalog data. In the
interval, the number of bright RS dwarf galaxies in galaxy clusters increaseswith the X-ray luminosity of the cluster as logN ∝ log X 0.64 . The dwarf-to-giant ratio (DGR) does not depend on the surroundings, mass, or richness of the cluster. This ratio is seen to increase for galaxy clusters with log L X > 43.5 erg/s or σ > 520 km/s. The compositeDGR of galaxy clusters, determined both from the membership in different structures and the X-ray luminosity along the radius R 200, is minimum in the central regions of the clusters (about 0.6 ± 0.06), reaches a maximum within 0.3–0.9R 200 (about 0.9 ± 0.10), and decreases approximately to 0.7 ± 0.03 upon reaching the radius 1.4 R 200.
  相似文献   

2.
Numerous U and V magnitude measurements were performed for the nucleus of the Seyfert galaxy NGC 4151 at the Crimean Laboratory of the SAI (Moscow University) in 1994–2005. Adding them to the previous data for 1968–1997 has led to a substantial increase in the confidence level of the light variations in NGC 4151 with a stable period of P G = 160.0108(7) min and a mean amplitude of 0.007 U mag (in the “active” state of the nucleus). The period of NGC 4151 agrees well with the period of 160.0101(15) min found previously in the oscillations of the Sun. It is treated as the period of a “coherent cosmic oscillation” independent of redshift z or as the period of “free cosmic vibrations” of the hydrogen atom, the main element of the Universe. The period and initial phase of the P G oscillation have been constant for 38 years of NGC 4151 observations. The new astrophysical phenomenon appears to be closely related to the quantum nonlocality of photons and is of particular interest in physics and cosmology.  相似文献   

3.
Previously, we have considered the equations of motion of the three-body problem in a Lagrange form (which means a consideration of relative motions of 3-bodies in regard to each other). Analysing such a system of equations, we considered the case of small-body motion of negligible mass m 3 around the second of two giant-bodies m 1, m 2 (which are rotating around their common centre of masses on Kepler’s trajectories), the mass of which is assumed to be less than the mass of central body. In the current development, we have derived a key parameter η that determines the character of quasi-circular motion of the small third body m 3 relative to the second body m 2 (planet). Namely, by making several approximations in the equations of motion of the three-body problem, such the system could be reduced to the key governing Riccati-type ordinary differential equations. Under assumptions of R3BP (restricted three-body problem), we additionally note that Riccati-type ODEs above should have the invariant form if the key governing (dimensionless) parameter η remains in the range 10?2 Open image in new window 10?3. Such an amazing fact let us evaluate the forbidden zones for Moon’s orbits in the inner solar system or the zones of distances (between Moon and Planet) for which the motion of small body could be predicted to be unstable according to basic features of the solutions of Riccati-type.  相似文献   

4.
We discuss the infrared (IR) (1.25–5 µm) photometry of eight planetary nebulae performed in 1999–2006. For all of the nebulae under study, we have firmly established IR brightness and color variations on time scales shorter than one year and up to 6–8 years. The greatest IR brightness variations were observed in IC 2149, IC 4997, and NGC 7662. Their J magnitudes varied within 0 . m 2–0 . m 25. In the remaining objects, the J magnitude variations did not exceed 0 . m 15. All of the planetary nebulae under study exhibited IR color variations. Based on the IR photometry, we have classified the central regions of the planetary nebula NGC 1514 and of the northern part of NGC 7635 seen through a 12″ aperture as a B(3–7) main-sequence star (NGC 1514) and a ~O9.5 upper-main-sequence star (NGC 7635). The nebulae IC 4997 and NGC 7027 exhibited an excess emission (with respect to the emission from a hot source) at λ > 2.5 µm.  相似文献   

5.
We determined the locations of Galactic spiral arm segments for various age groups from the available data on the positions, ages, radial velocities, and proper motions of 440 δ Cephei variables using a previously developed technique. We obtained such parameters of the Galactic spiral structure as the arm pitch angle, , and the pattern speed, ΩP = 21.7 ± 2.8 km s?1 kpc?1, which are comparable to and ΩP = 20.4 ± 2.5 km s?1 kpc?1, respectively, determined previously from open star clusters. Based on the radial velocities and proper motions of the sample stars, we derived the rotation curve of the Galaxy for the range of Galactocentric distances approximately from 6 to 15 kpc. Using the pattern speed, we determined the positions of the corotation region and the inner and outer Lindblad resonances. We estimated the perturbation amplitudes of the Galactic velocity field, f R = ?1.8 ± 2.5 km s?1 and f ? = +4.0 ± 3.4 km s?1.  相似文献   

6.
A new set of 16 high-resolution spectra for the small-amplitude Cepheid SU Cas obtained in 2007–2009 has allowed us to determine its atmospheric parameters (T eff = 6345 ± 30 K, log g = 2.40, V t = 3.25 km s?1) and to measure its radial velocities. The latter were added to the general list of radial velocities (375 estimates) obtained in the last 90 years. Using a frequency analysis, we have refined the pulsation and orbital periods of the Cepheid. Apart from the well-known fundamental pulsation period , we have detected a possible secondary period of . Their ratio of 0.96 suggests the existence of nonradial pulsations in the Cepheid’s atmosphere. Based on photoelectric photometry in the last 60 years, we have shown that the effective temperature undergoes cyclic secular changes of ±200 K with an unknown period. The mean effective temperature T eff = 6395 ± 52 K estimated from photometric data agrees well with our estimate from spectroscopic data. The variations of the mean color index, effective temperature, and γ-velocity (in 90 years of observations) point to a possible orbital motion of the well-known hot companion with the most probable periods of , , and . The elemental abundances in the atmosphere of SU Cas confirm the conclusion that this Cepheid is a typical yellow supergiant after the first dredge-up. Our T eff estimate gives a radius of 32R and a distance of 455 pc for it, which is inconsistent with its membership in the open cluster Alessi 95. The question about the pulsation mode of SU Cas still remains open.  相似文献   

7.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

8.
We present the results of our photometric (BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = ?20m.81 for NGC 304 and M B = ?19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s?1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 \(\mathcal{M}_ \odot \). The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices (B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors (B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.  相似文献   

9.
The results of a cross-correlation analysis of the optical and X-ray light curves for eight Seyfert galaxies, NGC 5548, NGC 7469, NGC 3227, NGC 4051, NGC 4151, Mrk 509, Mrk 79, and Akn 564 and for the optical spectra of the quasar 1E 0754 are presented. In the case of the galaxies NGC 5548 and NGC 7469, the maximum values of cross-correlation coefficients for optical and X-ray variations proved to be high (0.73 and 0.79, respectively). The lag time, determined from the maximum of cross-correlation function, is 2.800 ?1.58 +3.12 days for NGC 5548 and 0.6 ?4.3 +0.9 days for NGC 7469. This result favors downscattering of the X-ray emission into the optical range (direct Compton effect) for NGC 5548 and NGC 7469. In addition to the main maximum, which corresponds to the lag of the optical flux variations behind the X-ray flux, six objects (excluding Akn 564 and NGC 4151) show the wings in the intervals of cross-correlation functions that correspond to the time lags of X-ray emission behind the optical emission of approximately 10 days. A method of determining the masses of central black holes in AGNs through spectral line widths is presented; with this method the mass of the central black hole in the quasar 1E 0754 was found (M BH = 1.01 × 108 M sun). The position of the quasar 1E 0754 in the mass-luminosity diagram meets the position of other NLS 1 galaxies.  相似文献   

10.
The following conclusions about the kinematics and parameters of the gas in the vicinity of TW Hya have been drawn from an analysis of optical and ultraviolet line profiles and intensities. The accreting matter rises in the magnetosphere to a distance z>R* above the disk plane and falls to the star near its equator almost perpendicular to its plane. The matter outflows from a disk region with an outer radius of ≤0.5 AU. The [OI], [SII], and H2 lines originate in the disk atmosphere outside the outflow region, where the turbulent gas velocity is close to the local speed of sound. In the formation region of the forbidden lines, T?8500 K and Ne?5×106 cm?3, and the hydrogen is almost neutral: xe<0.03. The absorption features observed in the blue wings of some of the ultraviolet lines originate in the part of the wind that moves almost perpendicular to the disk plane, i.e., in the jet of TW Hya. The V z gas velocity component in the jet decreases with increasing distance from the jet axis from 200 to 30 km s?1. The matter outflowing from the inner disk boundary, moves perpendicular to the disk plane in the formation region of blue absorption line components, at a distance of ~0.5 AU from the axis of symmetry of the disk. This region of the wind is collimated into the jet at a distance of <3 AU from the disk plane. The gas temperature in the formation region of absorption components is ?2×104 K, and the gas density is <3×106 cm?3. This region of the jet is on the order of several AU away from the disk plane, while free recombination in the jet begins even farther from the disk. The mass-loss rate for TW Hya is \(\dot M_w < 7 \times 10^{ - 10} M_ \odot yr^{ - 1}\), which is a factor of 3lower than the mean accretion rate. The relative abundance of silicon and aluminum in the jet gas is at least an order of magnitude lower than its standard value.  相似文献   

11.
We investigate the properties of an axisymmetric gas flow without angular momentum onto a small compact object, in particular, on a Schwarzschild black hole in the supersonic region; the velocity of the object itself is assumed to be low compared to the speed of sound at infinity. First of all, we show that the streamlines intersect (i.e., a caustic is formed) on the symmetry axis at a certain distance r x from the center on the front side if the pressure is ignored. The characteristic radial size of the region in which the streamlines emerging from the sonic surface at an angle no larger than θ0 to the axis intersect is Δr = r x θ 0 2 /3. To refine the flow structure in this region, we have numerically computed the system without ignoring the pressure in the adiabatic approximation. We have estimated the parameters of the inferred region with anomalously high matter temperature and density accompanied by anomalously high energy release.  相似文献   

12.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

13.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

14.
Based on archival Hubble Space Telescope images, we have performed stellar photometry for the galaxy M 101 and other neighboring galaxies located at a small angular distance from M 101 and having radial velocities similar to that of M 101: M 51, M 63, NGC 5474, NGC 5477, UGC 9405, Ho IV, KUG1413+573, and others. Based on the TRGB method, we have determined the distances to these galaxies. We have found that the M 101 group lies at a distance of 6.8 Mpc and is a small compact galaxy group consisting of four galaxies: NGC 5474, NGC 5477, UGC 9405, and Ho IV. The bright massive galaxies M 51 and M 63 are considerably farther (D = 9.0 and 9.3 Mpc, respectively) than the M 101 group and do not belong to it. Applying the virial theorem to 27 objects (H II regions and galaxies),M 101 satellites located at different distances from the galaxy, has revealed an increase in the dynamical mass of M 101 with increasing sizes of the system of satellites used in calculating the mass. The maximum calculated mass of M 101 is 7.5 × 1011 M . The dynamical mass of M 101 calculated on the basis of the four galaxies constituting the group is 6.2 × 1011 M . The mass-to-light ratio for this mass is M/L = 18 (at the adopted luminosity of M 101, M B = ?20.8).  相似文献   

15.
We have studied the fine structure of the active H2O supermaser emission region in Orion KL with an angular resolution of 0.1 mas. We found central features suggestive of a bipolar outflow, bullets, and an envelope which correspond to the earliest stage of low-mass star formation. The ejector is a bright compact source ≤0.05 AU in size with a brightness temperature T b ?1017 K. The highly collimated bipolar outflow ~30 has a velocity v ej ?10 km s?1, a rotation period of ~0.5 yr, a precession period of ~10 yr, and a precession angle of ~33°. Precession gives rise to a jet in the shape of a conical helix. The envelope amplifies the radio emission from the components by about three orders of magnitude at a velocity v=7.65 km s?1.  相似文献   

16.
The Main Stellar Spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a polarimetric analyzer was used to measure the longitudinal magnetic-field component of FU Ori on January 24, 2002. The following (3σ) upper limits were obtained for the magnetic field B: B<350–400 G in the formation region of Fe I, Ni I, and Ca I absorption lines (disk + wind), and B<200 G in the formation region of the absorption component of the Hα line with a P Cyg profile. We conclude that the strength of a large-scale magnetic field capable of collimating the disk wind does not exceed 300 G. For the region where the emission component of the Hα line is formed, we found that B<100 G. Such a low value may have been obtained because the magnetic field lines in this region were almost perpendicular to the line of sight at the time of our observations.  相似文献   

17.
The superfine structure of the bulge of the galaxy NGC 4258 has been investigated in H2O maser emission at the epochs on February 4, 2013, and November 29, 2013. The peak intensities of the spectral components reached F ≈ 5 Jy. The emission of the component at v = 476 km s-1 dominated at the beginning of this period; the second component at v = 487 km s-1 was observed at the end of the period. The structure is a chain of compact components up to 200 µas or 7mpc in extent. The velocity of the local standard of rest is v LSR = 482 km s-1. Two bright compact components with a separation between them Δρ ≈ 35 µas or 1.3 mpc and a pair of components spaced 13 µas apart, whose brightness reaches 30% of the peak value corresponding to a brightness temperature T b ≈ 1018 K, are located at the center. The sizes of the components are ~2–3 µas. A splitting and a shift of the two pairs of components relative to each other by 8 µas or 0.3 mpc in the 45° direction are observed at the end of the period. The velocity gradient of the structure is dV/dρ = 224 km s-1 mas-1, suggesting a solid-body rotation with a period T ≈ 760 years. The compact components correspond to the tangential directions of the arm. Two parallel chains of components corresponding to the tangential directions of the walls of the bipolar outflow carrying away an excess angular momentum are ejected from the central part of the bulge, two sources. The outflow is oriented at an angle X ≈ 15° relative to the disk axis. The brightness of the outflow fragments does not exceed 1.5% of the peak value. The ejection of material from the central part in the northward direction at a level up to 0.2%, T b ≈ 1015 K, is observed at the epoch on February 4, 2013, at v = 478 km s-1. The core structure suggests a double system: parallel disks–vortices spaced 0.25 mpc apart.  相似文献   

18.
We study the variations of the properties of groups of galaxies with dynamical masses of 1013 M <M 200<1014 M , represented by two samples: one has redshifts of z < 0.027 and is located in the vicinity of the Coma cluster, the other has z > 0.027, and is located in the regions of the following superclusters of galaxies: Hercules, Leo, Bootes, Ursa Major, and Corona Borealis. Using the archived data of the SDSS and 2MASX catalogs, we determined the concentration of galaxies in the systems by measuring it as the inner density of the group within the distance of the fifth closest galaxy from the center brighter than M K = ?23. m 3. We also measured the magnitude gap between the first and the fourth brightest galaxies ΔM 14 located within one half of the selected radius R 200, the fraction of early-type galaxies, and the ratio of bright dwarf galaxies (Mr = [?18. m 5,?16. m 5]) to giant galaxies (M r < ?18. m 5) (DGR) within the radius R 200. The main aim of the investigation is to find among these characteristics the ones that reflect the evolution of groups of galaxies.We determined that the ratio of bright dwarf galaxies to early-type giant galaxies on the red sequence depends only on the x-ray luminosity: the DGR increases with luminosity. The fraction of early-type galaxies in the considered systems is equal, on average, to 0.65 ± 0.01, and varies significantly for galaxies with σ200 < 300 kms?1. Based on the luminosity of the brightest galaxy, the magnitude gap between the first and the fourth brightest galaxies in the groups, and on model computations of these parameters, we selected four fossil group candidates: AWM4, NGC0533, NGC0741, and NGC6098 (where the brightest galaxy is a double).We observe no increase in the number of faint galaxies (the α parameter of the Schechter function is less than 1) in our composite luminosity function (LF) for galaxy systems with z < 0.027 in the M K = [?26m,?21. m 5] range, whereas earlier we obtained α > 1 for the LF of the Hercules and Leo superclusters of galaxies.  相似文献   

19.
Precise measurement of the coronal properties of Active Galactic Nuclei (AGN) requires the availability of high signal-to-noise ratio data covering a wide range of X-ray energies. The Nuclear Spectroscopic Telescope Array (NuSTAR) which is highly sensitive to earlier missions in its operational energy range of 3–79 keV, allows us to arrive at precise estimates of the coronal parameters such as cut-off energy (\(E_\mathrm{cut}\)), coronal temperature (\(\textit{kT}_e\)) and geometry of the corona at least for sources that have \(E_\mathrm{cut}\) within the energy range of NuSTAR. In this paper, we present our preliminary results on the spectral analysis of two Seyfert galaxies namely 3C 120 and NGC 4151 using NuSTAR observations in the 3–79 keV band. We investigated the continuum and coronal parameters, the photon index \(\Gamma \), \(E_\mathrm{cut}\) and \(\textit{kT}_{e}\). By fitting the X-ray spectrum of 3C 120 and NGC 4151 with a simple phenomenological model, we found that both the sources showed a clear cut-off in their spectrum.  相似文献   

20.
We used high-resolution echelle spectra with high signal-to-noise ratio to determine with a high degree of accuracy some atmospheric parameters (T eff, log g and [Fe/H]) for 68 non-variable supergiants of types F, G, and K and 26 classical Cepheids in 302 pulsation phases. Very accurate effective temperatures, with errors of only 10–30 K, were determined by the line-depth ratio method. We found that the observed intrinsic color indices (B ? V)0 can be related to these parameters: (B ? V)0 = 57.984? 10.3587(log T eff)2 + 1.67572(log T eff)3 ? 3.356 log g+ 0.321 V t + 0.2615[Fe/H] + 0.8833log g(log T eff). With this empirical relation, the intrinsic colors of individual supergiants and classical Cepheids of spectral types F0-K0 and of luminosity classes I and II can be estimated with an accuracy as high as 0.05 m , which is comparable to the accuracy of the most elaborate photometric procedures. In view of large distances to supergiants, the method we propose here allows a large-scale mapping of interstellar extinction with an accuracy of 0.1–0.2 m in a quite large region of the Galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号