首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single glitch observed in PSR B1821−24, a millisecond pulsar in M28, is unusual on two counts. First, the magnitude of this glitch is at least an order of magnitude smaller  (Δν/ν∼ 10−11)  than the smallest glitch observed to date. Secondly, all other glitching pulsars have strong magnetic fields with   B ≳ 1011 G  and are young, whereas PSR B1821−24 is an old recycled pulsar with a field strength of  2.25 × 109 G  . We have earlier suggested that some of the recycled pulsars could actually be strange quark stars. In this work, we argue that the crustal properties of such a strange pulsar are just right to give rise to a glitch of this magnitude, explaining the scarcity of larger glitches in millisecond pulsars.  相似文献   

2.
We make a statistical analysis of the periodsP and period-derivativesP of pulsars using a model independent theory of pulsar flow in theP-P diagram. Using the available sample ofP andP values, we estimate the current of pulsars flowing unidirectionally along theP-axis, which is related to the pulsar birthrate. Because of radio luminosity selection effects, the observed pulsar sample is biased towards lowP and highP. We allow for this by weighting each pulsar by a suitable scale factor. We obtain the number of pulsars in our galaxy to be 6.05−2.80 +3.32 × 105 and the birthrate to be 0.048−0.011 +0.014 pulsars yr−1 galaxy−1. The quoted errors refer to 95 per cent confidence limits corresponding to fluctuations arising from sampling, but make no allowance for other systematic and random errors which could be substantial. The birthrate estimated here is consistent with the supernova rate. We further conclude that a large majority of pulsars make their first appearance at periods greater than 0.5 s. This ‘injection’, which runs counter to present thinking, is probably connected with the physics of pulsar radio emission. Using a variant of our theory, where we compute the current as a function of pulsar ‘age’ (1/2P/P), we find support for the dipole braking model of pulsar evolution upto 6 × 106 yr of age. We estimate the mean pulsar braking index to be 3.7−0.8 +0.8.  相似文献   

3.
Pulsar braking indices offer insight into the physics that underlies pulsar spin-down. Only five braking indices have been measured via phase-coherent timing; all measured values are less than 3, the value expected from magnetic dipole radiation. Here we present new measurements for three of the five pulsar braking indices, obtained with phase-coherent timing for PSRs J1846-0258 (n=2.65±0.01), B1509-58 (n=2.839±0.001) and B0540-69 (n=2.140±0.009). We discuss the implications of these results and possible physical explanations for them.   相似文献   

4.
The observed values of the time-derivatives of the spin or orbital frequency of pulsars are affected by their dynamical properties. We derive thorough analytical expressions for such dynamical contributions in terms of the Galactic coordinates, the proper motion, the pulsar distance, and the radial velocity. We find that the effects of the dynamical terms in the second-derivative of frequencies or parameters based on such second derivatives, e.g., braking index, are usually negligible. However, unique pulsars for which the effects of the dynamical terms are significant can exist. In particular, dynamical effects can make the magnitude of the observed value of the braking index to be in the order of thousand while the true value of it is close to the theoretically expected value three, especially if the pulsars lie close to the Galactic centre. Dynamics can also affect the value of the second derivative of the orbital frequency of a binary pulsar at the first decimal place. We also emphasize the fact that our expressions provide more accurate results than pre-existing approximate ones that exclude some of the terms. Comparison with a set of pulsars showed that the median value of the difference between the results obtained by our method and a pre-existing method is about 50 percent.  相似文献   

5.
We report on multi-epoch, multifrequency observations of 64 pulsars with high spectral and time resolution. Scintillation parameters were obtained for 49 pulsars, including 13 millisecond pulsars. Scintillation speeds were derived for all 49, which doubles the number of pulsars with speeds measured in this way. There is excellent agreement between the scintillation speed and proper motion for the millisecond pulsars in our sample using the simple assumption of a mid-placed scattering screen. This indicates that the scaleheight of scattering electrons is similar to that of the dispersing electrons. In addition, we present observations of the Vela pulsar at 14 and 23 GHz, and show that the scintillation bandwidth scales as ν3.93 over a factor of 100 in observing frequency. We show that for PSR J0742−2822, and perhaps PSR J0837−4135, the Gum nebula is responsible for the high level of turbulence along their lines of sight, contrary to previous indications. There is a significant correlation between the scintillation speeds and the product of the pulsar's period and period derivative for the 'normal' pulsars. However, we believe this to be caused by selection effects both in pulsar detection experiments and in the choice of pulsars used in scintillation studies.  相似文献   

6.
PSR J1806−2125 is a pulsar discovered in the Parkes multibeam pulsar survey with a rotational period of 0.4 s and a characteristic age of 65 kyr. Between MJDs 51462 and 51894 this pulsar underwent an increase in rotational frequency of  Δ ν / ν ≈16×10-6  . The magnitude of this glitch is ∼2.5 times greater than any previously observed in any pulsar and 16 times greater than the mean glitch size. This Letter gives the parameters of the glitch and compares its properties with those of previously observed events. The existence of such large and rare glitches offers new hope for attempts to observe thermal X-ray emission from the internal heat released following a glitch, and suggests that pulsars which previously have not been observed to glitch may do so on long time-scales .  相似文献   

7.
A method is suggested with which to explore the gravitational wave background (GWB) in the frequency range 10−12–10−8 Hz. This method is based on the precise measurements of pulsar rotational parameters: the influence of gravitational waves (GWs) in this frequency range will affect these parameters and therefore some conclusions about the energy density of the GWB can be made using analysis of the derivatives of pulsar rotational frequency. The calculated values of the second derivative from a number of pulsars limit the density of the GWB, Ωgw, as follows:  Ωgw < 2 × 10−6  . Also, the time series of the frequency ν of different pulsars in a pulsar array can be cross-correlated pairwise in the same manner as in anomalous residuals analysis, thus providing the possibility of GWB detection in the ultra-low-frequency range.  相似文献   

8.
Our paper is dedicated to the problem of anomalous values of braking indices n obs and spin frequency second derivatives [(n)\ddot]\ddot \nu of isolated radio pulsars. Observations of these objects for over 40 years have shown that in addition to the complex short-term irregular component in the evolution of the pulsars’ frequency, secular values of its second derivative are orders of magnitude greater than the predicted theoretical ones, and in a good half of cases—they are even negative. We earlier attributed this behavior of secular values of the second derivative to the presence of a cyclic component in the secular evolution of ν(t), with a characteristic recurrence time of thousands to tens of thousand years. We continue to develop this hypothesis based on a more detailed statistical analysis of the characteristics of 297 isolated radio pulsars: we analyze the model of these objects spin-down, consisting of two components, monotonic and cyclic, and determine their parameters. We demonstrate that the monotonic spin-down component is described by the classical magnetodipolar power law with an braking index of about 3, while the large amplitude of the cyclic component causes a significant variation of the observed spin-down rate ([(n)\dot] )(\dot \nu ) (with respect to magnetodipolar one), and fully determines the anomalous values of [(n)\ddot]\ddot \nu and n obs. An important consequence of the existence of a cyclic component of the pulsar rotational variations is the difference between their characteristic ages and respective secular values (by about 0.5–5 times). This allows to explainthe observed discrepancy of the characteristic and physical ages of some objects, as well as very large, up to 108 years, characteristic ages of some old pulsars. The paper argues that the cyclic component of the observed spin-down is due to the long-term precession of neutron stars around their magnetic axes, which, in particular, may be driven by the anomalous braking torque. In the model of purely magnetodipolar braking this torque is a consequence of emission in the near field zone.  相似文献   

9.
为了解释间歇脉冲星PSR B1931+24在射电噪比射电宁静状态下更大的自转减慢率和模拟蟹状星云脉冲星的自转演化,建立同时考虑了具有不同加速电势的核区和环区的环加速间隙下的星风制动模型.其中对于PSR B1931+24通过计算得到它的磁场强度和磁倾角,并且预言了其理论制动指数.对于蟹状星云脉冲星,通过计算得到它的磁场强度和磁倾角,还计算得到其制动指数随周期的演化和它在周期-周期导数图上的自转演化.相比于真空加速间隙、外加速间隙等,环加速间隙也同样能够适用于星风制动模型.  相似文献   

10.
We use a new self-consistent model to derive the conversion efficiency from rotation power to γ-ray power for pulsars (εth). Our result indicates that εth∝τ6/7 P 2, where τ and P are the characteristic age and period of the pulsar, which shows that although the efficiency increases with the characteristic age of the pulsar, it also depends on the pulsar period. We test our model results with the survey of high-energy γ-rays from pulsars by EGRET. Our model not only successfully explains the efficiency of the confirmed γ-ray pulsars but also explains why the γ-ray efficiency of millisecond pulsars is so low.  相似文献   

11.
We show that the strong correlation observed between the braking indices (n) and the slowing-down ages (Τ) of pulsars is inconsistent with counteralignment between their rotation and magnetic axes, but that the data on pulsars with positive braking indices is consistent with alignment. Alternatively, slowing-down noise can quantitatively account for the data on all pulsars except the Crab and the Vela, and so for the apparent|n| ∼ Τ2 correlation observed for the older pulsars.  相似文献   

12.
Selection effects are a major source of error in statistical studies of pulsar data since the observed sample is a biased subset of the full galactic pulsar population. It is important to identify all selection effects and make a reasonable model before attempting to determine pulsar properties. Here we discuss a hitherto neglected selection effect which is a function of the periodP of the pulsar. We find that short-P pulsars are more difficult to detect, particularly if their dispersion measures are high. We also discuss a declination-dependent selection effect in the II Molonglo Survey (II MS), and find some evidence for the existence of both selection effects in the pulsar data from this survey. We discuss the implications of these additional selection effects for the recently proposed ‘injection’ of pulsars whereby pulsars seem to switch on only at longerP. Using the II MS data we calculate that the observability of pulsars withP between 0.0 s and 0.5 s is about 18 per cent less with the new selection effects than hitherto believed; the mean correction is 6 per cent forP between 0.5 s and 1.0 s. We conclude that injection is not qualitatively affected by these corrections.  相似文献   

13.
We present results of our pulsar population synthesis of normal and millisecond pulsars in the Galactic plane. Over the past several years, a program has been developed to simulate pulsar birth, evolution and emission using Monte Carlo techniques. We have added to the program the capability to simulate millisecond pulsars, which are old, recycled pulsars with extremely short periods. We model the spatial distribution of the simulated pulsars by assuming that they start with a random kick velocity and then evolve through the Galactic potential. We use a polar cap/slot gap model for γ-ray emission from both millisecond and normal pulsars. From our studies of radio pulsars that have clearly identifiable core and cone components, in which we fit the polarization sweep as well as the pulse profiles in order to constrain the viewing geometry, we develop a model describing the ratio of radio core-to-cone peak fluxes. In this model, short period pulsars are more cone-dominated than in our previous studies. We present the preliminary results of our recent study and the implications for observing these pulsars with GLAST and AGILE.   相似文献   

14.
We study the contribution of young pulsars, with characteristic ages of less than 106 yr, to the diffuse γ-ray emission from the Large Magellanic Cloud (LMC). Based on the outer gap model for γ-ray emission proposed by Zhang & Cheng and pulsar properties in the LMC given by Hartmann, Brown & Schnepf, we simulate the properties of the young pulsars in the LMC. We show that γ-rays produced by the pulsars in the LMC may make an important contribution to the diffuse γ-rays in the LMC, especially in the high-energy range. We calculate the γ-ray energy spectrum of the pulsars in the LMC and show that the γ-ray component contributed by the pulsars to the diffuse γ-rays in the high-energy range (above ∼1 GeV) becomes dominant. We expect that none of the young pulsars should be detectable as an individual point source of γ-ray emission by EGRET. We also expect that pulsar contribution above ∼1 GeV in the SMC is very important.  相似文献   

15.
The initial period of a pulsar is an important factor in our understanding of the formation of neutron stars and of the nature of the equation of state of neutron star matter.Up to now this quantity can only be obtained for a few pulsars for which accurate age and braking index are known.Based on the theory of the offcenter dipole emission,in which pulsars obtain theiry high velocities depending on the initial periods,we calculate the initial period using the proper motion data,Because the orbital velocity of the progenitor and asymmetric kick in the supernova explosion may also contribute to the observed velocity of the pusar,the derived values of initial periods are lower limits.For normal pulsars,the initial periods are in the range of 0.6~2.6ms.For the millisecond pulsars,the initial periods are comparable to their current periods,and the ratio between the initial period and the current period increases with the decrease of the current period.For PSR B1937 21 with the shortest period of 1.56ms,the ratio is 0.77.  相似文献   

16.
Shemar & Lyne have previously presented observations and an analysis of 32 glitches and their subsequent relaxations observed in a total of 15 pulsars. These data are brought together in this paper with those published by other authors. We show quantitatively how glitch activity decreases linearly with decreasing rate of slow-down. As indicated previously from studies of the Vela pulsar, the analysis suggests that 1.7 per cent of the moment of inertia of a typical neutron star is normally contained in pinned superfluid which releases its excess angular momentum at the time of a glitch. There is a broad range of glitch amplitude and there is a strong indication that pulsars with large magnetic fields suffer many small glitches while others show a smaller number of large glitches. Transient effects following glitches are very marked in young pulsars and decrease linearly with decreasing rate of slow-down, suggesting that the amount of loosely pinned superfluid decreases with age. We suggest that the low braking index of the Vela and Crab pulsars cannot be caused by a decreasing moment of inertia and should be attributed to step increases in the effective magnetic moment of the neutron star at the glitches.  相似文献   

17.
The computation of theoretical pulsar populations has been a major component of pulsar studies since the 1970s. However, the majority of pulsar population synthesis has only regarded isolated pulsar evolution. Those that have examined pulsar evolution within binary systems tend to either treat binary evolution poorly or evolve the pulsar population in an ad hoc manner. Thus, no complete and direct comparison with observations of the pulsar population within the Galactic disc has been possible to date. Described here is the first component of what will be a complete synthetic pulsar population survey code. This component is used to evolve both isolated and binary pulsars. Synthetic observational surveys can then be performed on this population for a variety of radio telescopes. The final tool used for completing this work will be a code comprised of three components: stellar/binary evolution, Galactic kinematics and survey selection effects. Results provided here support the need for further (apparent) pulsar magnetic field decay during accretion, while they conversely suggest the need for a re-evaluation of the assumed typical millisecond pulsar formation process. Results also focus on reproducing the observed     diagram for Galactic pulsars and how this precludes short time-scales for standard pulsar exponential magnetic field decay. Finally, comparisons of bulk pulsar population characteristics are made to observations displaying the predictive power of this code, while we also show that under standard binary evolutionary assumption binary pulsars may accrete much mass.  相似文献   

18.
It is expected that specific globular clusters (GCs) can contain up to a hundred of millisecond pulsars. These pulsars can accelerate leptons at the shock waves originated in collisions of the pulsar winds and/or inside the pulsar magnetospheres. Energetic leptons diffuse gradually through the GC Comptonizing stellar and microwave background radiation. We calculate the GeV–TeV γ-ray spectra for different models of injection of leptons and parameters of the GCs assuming reasonable, of the order of 1 per cent, efficiency of energy conversion from the pulsar winds into the relativistic leptons. It is concluded that leptons accelerated in the GC cores should produce well localized γ-ray sources which are concentric with these GCs. The results are shown for four specific GCs (47 Tuc, Ter 5, M13 and M15), in which significant population of millisecond pulsars have been already discovered. We argue that the best candidates, which might be potentially detected by the present Cherenkov telescopes and the planned satellite telescopes (AGILE, GLAST), are 47 Tuc on the Southern hemisphere, and M13 on the Northern hemisphere. We conclude that detection (or non-detection) of GeV–TeV γ-ray emission from GCs by these instruments put important constraints on the models of acceleration of leptons by millisecond pulsars.  相似文献   

19.
We have looked for and found a possible spatial correlation between the present pulsar distribution and the estimated locations of the spiral arms at earlier epochs. Through a detailed statistical analysis we find a significant correlation between the present distribution of pulsars and the mass distribution (in the spiral arms) expected about 60 Myr ago for a corotation resonance radius of 14kpc. We discuss the implications of this correlation for the minimum mass of the progenitors of pulsars. Interpreting the spread in the locations of pulsars with respect to the past locations of the spiral arms as predominantly due to their space velocities, we derive an average velocity for the pulsar population.  相似文献   

20.
A prolonged timing of millisecond pulsars has revealed low-frequency uncorrelated (infrared) noise, presumably of astrophysical origin, in the pulse arrival time (PAT) residuals for some of them. Currently available pulsar timing methods allow the statistical parameters of this noise to be reliably measured by decomposing the PAT residual function into orthogonal Fourier harmonics. In most cases, pulsars in globular clusters show a low-frequency modulation of their rotational phase and spin rate. The relativistic time delay of the pulsar signal in the curved spacetime of randomly distributed and moving globular cluster stars (the Shapiro effect) is suggested as a possible cause of this modulation. Extremely important (from an astrophysical point of view) information about the structure of the globular cluster core, which is inaccessible to study by other observational methods, could be obtained by analyzing the spectral parameters of the low-frequency noise caused by the Shapiro effect and attributable to the random passages of stars near the line of sight to the pulsar. Given the smallness of the aberration corrections that arise from the nonstationarity of the gravitational field of the randomly distributed ensemble of stars under consideration, a formula is derived for the Shapiro effect for a pulsar in a globular cluster. The derived formula is used to calculate the autocorrelation function of the low-frequency pulsar noise, the slope of its power spectrum, and the behavior of the σz statistic that characterizes the spectral properties of this noise in the form of a time function. The Shapiro effect under discussion is shown to manifest itself for large impact parameters as a low-frequency noise of the pulsar spin rate with a spectral index of n = −1.8 that depends weakly on the specific model distribution of stars in the globular cluster. For small impact parameters, the spectral index of the noise is n = −1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号