首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used the ATNF Mopra antenna and the SEST antenna to search in the directions of several class II methanol maser sources for emission from six methanol transitions in the frequency range 85–115 GHz. The transitions were selected from excitation studies as potential maser candidates. Methanol emission at one or more frequencies was detected from five of the maser sources, as well as from Orion KL. Although the lines are weak, we find evidence of maser origin for three new lines in G345.01+1.79, and possibly one new line in G9.62+0.20.
The observations, together with published maser observations at other frequencies, are compared with methanol maser modelling for G345.01+1.79 and NGC 6334F. We find that the majority of observations in both sources are consistent with a warm dust (175 K) pumping model at hydrogen density ∼106 cm−3 and methanol column density ∼ 5×1017 cm−2. The substantial differences between the maser spectra in the two sources can be attributed to the geometry of the maser region.  相似文献   

2.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

3.
We present high angular resolution MERLIN observations of the 18-cm OH maser and continuum emission associated with the active core of the ultraluminous infrared galaxy Markarian 273. The continuum emission comes from three distinct regions in the central arcsecond of the galaxy. The brightest region of emission has a double-peaked structure which is spatially coincident with similar structures observed at 6 cm and 2.2 μm. The peak of the OH maser emission is spatially coincident with the peak in the continuum. For the first time the maser emission is spatially resolved, allowing us to measure the gas motion within the central 100 pc of the galaxy. Maser emission is found in both the 1665- and 1667-MHz lines, with no systematic offset found in the spatial locations of the two lines. The brighter component of the maser emission shows ordered motion and is aligned along the axis of the double-peaked structure in the brightest continuum region. The gas motion enables us to estimate the central mass density to be 850±50 M pc−3, which corresponds to a total mass of ≈1.5×108 M.  相似文献   

4.
We present the light curves of the 6.7 and 12.2 GHz methanol masers in the star-forming region G9.62+0.20E for a time-span of more than 2600 d. The earlier reported period of 244 d is confirmed. The results of monitoring the 107 GHz methanol maser for two flares are also presented. The results show that flaring occurs in all three masing transitions. It is shown that the average flare profiles of the three masing transitions are similar. The 12.2 GHz masers are the most variable of the three masers with the largest relative amplitude having a value of 2.4. The flux densities for the different masing transitions are found to return to the same level during the low phase of the masers, suggesting that the source of the periodic flaring is situated outside the masing region, and that the physical conditions in the masing region are relatively stable. On the basis of the shape of the light curve we excluded stellar pulsations as the underlying mechanism for the periodicity. It is argued that a colliding wind binary can account for the observed periodicity and provide a mechanism to qualitatively explain periodicity in the seed photon flux and/or the pumping radiation field. It is also argued that the dust cooling time is too short to explain the decay time of about 100 d of the maser flare. A further analysis has shown that for the intervals from days 48 to 66 and from days 67 to 135 the decay of the maser light curve can be interpreted as due to the recombination of a thermal hydrogen plasma with densities of approximately  1.6 × 106 cm−3  and  6.0 × 105 cm−3  , respectively.  相似文献   

5.
A southern hemisphere survey of methanol emission sources in two millimetre-wave transitions has been carried out using the ATNF Mopra millimetre telescope. 16 emission sources have been detected in the 31–40 A+ transition of methanol at 107 GHz, including six new sources exhibiting class II methanol maser emission features. Combining these results with the similar northern hemisphere survey, a total of eleven 107-GHz methanol masers have been detected. A survey of the methanol emission in the 00–1−1 E transition at 108 GHz has resulted in the detection of 16 sources; one of them showing maser characteristics. This is the first methanol maser detected at 108 GHz, presumably of class II. The results of large velocity gradient statistical equilibrium calculations confirm the classification of these new sources as class II methanol masers.  相似文献   

6.
We have used the Australia Telescope Compact Array (ATCA) to make a sensitive  (5 σ ≃100 mJy)  search for maser emission from the 4765-MHz 2Π1/2   F =1→0  transition of OH. 55 star formation regions were searched and maser emission with a peak flux density in excess of 100 mJy was detected toward 14 sites, with 10 of these being new discoveries. In addition we observed the 4750-MHz 2Π1/2   F =1→1  transition towards a sample of star formation regions known to contain 1720-MHz OH masers, detecting marginal maser emission from G348.550−0.979. If confirmed this would be only the second maser discovered from this transition.
The occurrence of 4765-MHz OH maser emission accompanying 1720-MHz OH masers in a small number of well-studied star formation regions has led to a general perception in the literature that the two transitions favour similar physical conditions. Our search has found that the presence of the excited-state 6035-MHz OH transition is a much better predictor of 4765-MHz OH maser emission from the same region than 1720-MHz OH maser emission is. Combining our results with those of previous high-resolution observations of other OH transitions we have examined the published theoretical models of OH masers and find that none of them predicts any conditions in which the 1665-, 6035- and 4765-MHz transitions are inverted simultaneously.  相似文献   

7.
We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR)  G359.1–0.5  and the non-thermal radio filament known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock, while the H2 filament is located at the boundary between the pre-shock and post-shock regions.  相似文献   

8.
We have made observations of the four hyperfine transitions of the 2Π3/2,     ground state of OH at 1612, 1665, 1667 and 1720 MHz and the related 1.6-GHz continuum emission towards NGC 6334 using the Australia Telescope Compact Array. The observations covered all the major radio continuum concentrations aligned along the axis of NGC 6334 (V, A to F). We have detected seven OH masers plus a possible faint eighth maser; two of these masers are located towards NGC 6334-A. Absorption at 1665 and 1667 MHz was detected towards almost all the continuum distribution. All transitions show non-LTE behaviour. The 1667-/1665-MHz intensity ratios range from 1.0 to 1.2, significantly less than their LTE value of 1.8. The results of the OH 'Sum Rule' suggest that this discrepancy cannot be explained solely by high optical depths. The 1612- and 1720-MHz line profiles show conjugate behaviour whereby one line is in absorption and the other in emission. In addition, the profiles commonly showed a flip from absorption to emission and vice versa, which is interpreted as a density gradient. The OH line-to-continuum distribution, optical depth and velocity trends are consistent with a bar-like shape for the molecular gas which wraps around the continuum emission.  相似文献   

9.
Class II methanol masers are found in close association with OH main-line masers in many star-forming regions, where both are believed to flag the early stages in the evolution of a massive star. We have studied the formation of masers in methanol and OH under identical model conditions for the first time. Infrared pumping by radiation from warm dust at temperatures >100 K can account for the known maser lines in both molecules, many of which develop simultaneously under a range of conditions. The masers form most readily in cooler gas (<100 K) of moderately high density  (105–108 cm-3)  , although higher gas temperatures and/or lower densities are also compatible with maser action. The agreement between the current model (developed for methanol) and the established OH maser trends is very encouraging, and we anticipate that further tuning of the model will further improve such agreement.
We find the gas-phase molecular abundance to be the key determinant of observable maser activity for both molecules. Sources exhibiting both 6668-MHz methanol and 1665-MHz OH masers have a typical flux density ratio of 16; our model suggests that this may be a consequence of maser saturation. We find that the 1665-MHz maser approaches the saturated limit for OH abundances >10−7.3, while the 6668-MHz maser requires a greater methanol abundance >10−6. OH-favoured sources are likely to be less abundant in methanol, while methanol-favoured sources may be less abundant in OH or experiencing warm (>125 K), dense (∼107 cm−3) conditions. These abundance requirements offer the possibility of tying the appearance of masers to the age of the new-born star via models of gas-phase chemical evolution following the evaporation of icy grain mantles.  相似文献   

10.
We discuss the evolution of the magnetic flux density and angular velocity in a molecular cloud core, on the basis of three-dimensional numerical simulations, in which a rotating magnetized cloud fragments and collapses to form a very dense optically thick core of  >5 × 1010 cm−3  . As the density increases towards the formation of the optically thick core, the magnetic flux density and angular velocity converge towards a single relationship between the two quantities. If the core is magnetically dominated its magnetic flux density approaches  1.5( n /5 × 1010 cm−3)1/2 mG  , while if the core is rotationally dominated the angular velocity approaches  2.57 × 10−3 ( n /5 × 1010 cm−3)1/2 yr−1  , where n is the density of the gas. We also find that the ratio of the angular velocity to the magnetic flux density remains nearly constant until the density exceeds  5 × 1010 cm−3  . Fragmentation of the very dense core and emergence of outflows from fragments will be shown in the subsequent paper.  相似文献   

11.
Class II methanol masers are believed to be associated with high-mass star formation. Recent observations by Walsh et al. and Phillips et al. reported a very low detection rate of radio continuum emission toward a large sample of 6.7-GHz methanol masers. These results raise questions about the evolutionary phase and/or the mass range of the exciting stars of the masers. Here we report the results of a VLA search for 8.4-GHz continuum emission from the area around five Class II methanol masers, four of which were not detected by Walsh et al. at 8.6 GHz. Radio continuum emission was detected in all five fields although only two of the nine maser spot groups in the five fields were found to be superimposed on radio continuum sources that appear to be ultra-compact H  ii (UCH  ii ) regions. This suggests that continuum counterparts for some masers might be found in further surveys for which the sensitivity level is lower than  1 mJy beam−1  . Considering our results as well as observations from other studies of methanol masers we conclude that masers without radio continuum counterparts are most likely associated with high-mass stars in a very early evolutionary stage, either prior to the formation of a UCH  ii region or when the H  ii region is still optically thick at centimetre wavelengths. With one exception all maser spot groups in the five fields were found to be associated with mid-infrared objects detected in the Midcourse Space Experiment survey.  相似文献   

12.
We have used the Australia Telescope Compact Array (ATCA) to make high-resolution images of the 6.7-GHz 51 → 60A+ maser transition of methanol towards 33 sources in the Galactic plane. Including the results from 12 methanol sources in the literature, we find that 17 out of 45 sources have curved or linear morphology. Most of the 17 have a velocity gradient along the line, which is consistent with masers lying in an edge-on circumstellar disc surrounding a massive star. We also made simultaneous continuum observations of the sources at 8.6 GHz, in order to image any associated H  ii region. 25 of the sources are associated with an ultracompact H  ii region, with a detection limit of ∼0.5 mJy beam−1. We argue that the methanol sources without an associated H  ii region represent less massive embedded stars, not an earlier stage in the lifetime of the star, as previously suggested.  相似文献   

13.
Phase-referenced observations of 13 star-forming regions in the  2Π1/2, J = 1/2  transition of rotationally excited OH at 4765 MHz have been carried out using MERLIN. Two of the regions were also observed at 4750 MHz and one at 4660 MHz. There were 10 maser detections at 4765 MHz and three non-detections. There were no detections at 4750 and 4660 MHz. The 4765-MHz masers have brightness temperatures of  ∼107 K  at MERLIN resolution (∼50 mas). Several cases of 4765-MHz masers overlapping in position and velocity with 1720- and 1665-MHz masers are reported. There are also isolated 4765-MHz masers with peak flux densities ≥30 times that of any ground-state counterpart. Most of the 4.7-GHz maser spots are unresolved at 50-mas angular resolution, but in four of the nearest sources the maser spots are resolved, indicating a characteristic size for 4765-MHz maser regions of ∼100 au. In W3(OH) we discovered that 20 per cent of the 4765-MHz emission comes from a narrow low-brightness filament that stretches north–south for ∼1.0 arcec (∼2200 au) between two previously known 4765-MHz maser spots. The filament appears in projection against the H  ii region and has a brightness temperature of  ∼4 × 105 K  . There are matching absorption features in mainline transitions of highly excited OH. The filament may trace a shock front in a rotating disc.  相似文献   

14.
We report near-infrared molecular hydrogen and Brackett γ observations towards the massive star formation site G323.74−0.26. The region contains an H  ii region, ∼30 arcsec across, and two Class II methanol maser sites, which are separate from the H  ii region. We show that the spectral type of the star powering the H  ii region is B0. We also show that at least one of the maser sites is powered by an infrared source that appears to be at least as luminous as the star responsible for the H  ii region. However, neither of the two stars associated with the methanol maser sites shows any signs of radio continuum emission above 0.2 mJy. For at least one of these maser sites, this shows a real deficiency in the radio continuum flux, which we suggest is an indication that the star is in an early stage of development, before its H  ii region becomes visible, or it is a multiple intermediate mass star system. A shocked molecular hydrogen outflow is seen extending from one of the maser sites towards the west and possibly in a fan shape, suggesting that the stars associated with the maser sites are indeed at a very early stage of evolution.  相似文献   

15.
We present evidence for interaction between the supernova remnant (SNR) G357.7+0.3 and nearby molecular clouds, leading to the formation of wind-swept structures and bright emission rims. These features are not observed at visual wavelengths, but are clearly visible in mid-infrared mapping undertaken using the Spitzer Space Telescope . Analysis of one of these clouds, the bright cometary structure G357.46+0.60, suggests that it contains strong polycyclic aromatic hydrocarbon emission features in the 5.8 and 8.0 μm photometric bands, and that these are highly variable over relatively small spatial scales. The source is also associated with strong variations in electron density; a far-infrared continuum peak associated with dust temperatures of ∼30 K; and has previously been observed in the 1720 MHz maser transition of OH, known to be associated with SNR shock excitation of interstellar clouds. This source also appears to contain a young stellar object (YSO) within the bright rim structure, with a steeply rising spectrum between 1.25 and 24 μm. If the formation of this star has been triggered recently by the SNR, then YSO modelling suggests a stellar mass  ∼5–10 M  , and luminosity   L YSO∼102–2 × 103 L  .
Finally, it is noted that a further, conical emission region appears to be associated with the Mira V1139 Sco, and it is suggested that this may represent the case of a Mira outflow interacting with a SNR. If this is the case, however, then the distance to the SNR must be ∼half of that determined from CS   J = 2–1  and 3–2 line radial velocities.  相似文献   

16.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

17.
We investigate the possibility of interstellar masers in transitions of the methanol isotopomers CH3OD, 13CH3OH and CH318OH, and of CH3SH. The model used, in which masers are pumped through the first and second torsionally excited states by IR radiation, has accounted successfully for the Class II masers in main species methanol, 12CH316OH. Several potential maser candidates are identified for CH3OD, their detectability depending on the enrichment of this species in star-forming regions. In 13CH3OH and CH318OH the best maser candidates are direct counterparts of the well-known 6.7- and 12.2-GHz methanol masers, but the lower interstellar abundance of these substituted species means that the expected brightness is greatly reduced. The maser candidates in CH3SH are also weak. By comparing these species we find that the large b -component of the dipole moment in methanol plays a significant role in its propensity to form masers, as does the strong torsion–rotation interaction due to the light hydroxyl frame. Thus the exceptional brightness of interstellar methanol masers is due to a favourable combination of molecular properties as well as high interstellar abundance.  相似文献   

18.
Whether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (sub-mm) observations, sensitive to cold dust, have shown an excess at 450 and 850 μm in young remnants Cassiopeia A (Cas A) and Kepler. Some of the sub-mm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper, we explore the emission from material towards Kepler using sub-mm continuum imaging and spectroscopic observations of atomic and molecular gas, via H  i , 12CO( J = 2–1) and 13CO( J = 2–1). We detect weak CO emission (peak   T *A  = 0.2–1 K, 1–2 km s−1 full width at half-maximum) from diffuse, optically thin gas at the locations of some of the sub-mm clumps. The contribution to the sub-mm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is  0.1–1.2 M  , about half of the quoted values in the original study by Morgan et al., but still sufficient to explain the origin of dust at high redshifts.  相似文献   

19.
We have used the Swedish ESO Submillimeter Telescope to observe the molecular gas in the Circinus galaxy using the CO(1 → 0) transition as a tracer. The central region and major axis have been mapped and several other points were also observed. The gas in the galaxy is concentrated towards the nucleus, the peak being coincident with the radio/optical core. The inclination of the molecular galactic disc is more comparable to that of the radio continuum than to that of the large-scale H  i emission. Evidence for an anomalous spur structure pointing radially away from the galactic centre is presented, and may indicate a causal link between it and similar features seen in optical lines and radio continuum. Our data suggest the presence of a central molecular ring or disc with radius 300 ± 50 pc and a rotation velocity of about 200 km s−1 (assuming i  = 73°). The dynamical mass of the nucleus is estimated to be no greater than 3.9 × 109 M. Assuming that the distribution of gas varies smoothly in the outer regions, we calculate the mass of molecular gas in the galaxy to be at least M mol = 1.1 × 109 M, and the star-forming efficiency to be 11 ± 2 L M−1. These results imply that Circinus is undergoing a massive central starburst which may be, at least partially, responsible for its extended minor axis emission seen in several wavebands.  相似文献   

20.
We present radio observations of comet 9P/Tempel 1 associated with the Deep Impact spacecraft collision of 2005 July 4. Weak 18-cm OH emission was detected with the Parkes 64-m telescope, in data averaged over July 4–6, at a level of  12 ± 3 mJy km s−1  , corresponding to OH production rate  2.8 × 1028  molecules s−1 (Despois et al. inversion model, or  1.0 × 1028 s−1  for the Schleicher & A'Hearn model). We did not detect the HCN 1–0 line with the Mopra 22-m telescope over the period July 2–6. The 3σ limit of 0.06 K km s−1 for HCN on July 4 after the impact gives the limit to the HCN production rate of  <1.8 × 1025 s−1  . We did not detect the HCN 1–0 line, 6.7 GHz CH3OH line or 3.4-mm continuum with the Australia Telescope Compact Array (ATCA) on July 4, giving further limits on any small-scale structure due to an outburst. The 3σ limit on HCN emission of 2.5 K km s−1 from the ATCA around impact corresponds to limit < 4 × 1029 HCN molecules released by the impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号