首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solubility curves were determined for a synthetic gibbsite and a natural gibbsite (Minas Gerais, Brazil) from pH 4 to 9, in 0.2% gibbsite suspensions in 0.01 M NaNO3 that were buffered by low concentrations of non-complexing buffer agents. Equilibrium solubility was approached from oversaturation (in suspensions spiked with Al(NO3)3 solution), and also from undersaturation in some synthetic gibbsite suspensions. Mononuclear Al ion concentrations and pH values were periodically determined. Within 1 month or less, data from over-and undersaturated suspensions of synthetic gibbsite converged to describe an equilibrium solubility curve. A downward shift of the solubility curve, beginning at pH 6.7, indicates that a phase more stable than gibbsite controls Al solubility in alkaline systems. Extrapolation of the initial portion of the high-pH side of the synthetic gibbsite solubility curve provides the first unified equilibrium experimental model of Al ion speciation in waters from pH 4 to 9.The significant mononuclear ion species at equilibrium with gibbsite are Al3+, AlOH2+, Al(OH)+2 and Al(OH)?4, and their ion activity products are 1K50 = 1.29 × 108, 1Ks1 = 1.33 × 103, 1Ks2 = 9.49 × 10?3 and 1Ks4 = 8.94 × 10?15. The calculated standard Gibbs free energies of formation (ΔG°f) for the synthetic gibbsite and the A1OH2+, Al(OH)+2 and Al(OH)?4 ions are ?276.0, ?166.9, ?216.5 and ?313.5 kcal mol?1, respectively. These ΔG°f values are based on the recently revised ΔG°f value for Al3+ (?117.0 ± 0.3 kcal mol?1) and carry the same uncertainty. The ΔG°f of the natural gibbsite is ?275.1 ± 0.4 kcal mol?, which suggests that a range of ΔG°f values can exist even for relatively simple natural minerals.  相似文献   

2.
Oxygen isotope exchange between BaSO4 and H2O from 110 to 350°C was studied using 1 m H2SO4-1 m NaCl and 1 m NaCl solutions to recrystallize the barite. The slow exchange rate (only 7% exchange after 1 yr at 110°C and 91% exchange after 22 days at 350°C in 1 m NaCl solution) prompted the use of the partial equilibrium technique. However, runs at 300 and 350°C were checked by complete exchange experiments. The temperature calibration curve for the isotope exchange is calculated giving most weight to the high temperature runs where the partial equilibrium technique can be tested. Oxygen isotope fractionation factors (α) in 1 m NaCl solution (110–350°C), assuming a value of 1.0407 for αCO2H2O at 25°C, are:
1031nαBaSO4?1 m NaCl = 2.64 (106T2) ? 5.3 ± 0.3
.These data, when corrected for ion hydration effects in solution (Truesdell, 1974), give the fractionation factors in pure water:
1031nαBaSO4H2O = 3.01 (106/T2) ?7.3 ± 0.1
.In the 1 m H2SO4-1 m NaCl runs, sulfur isotope fractionation between HSO?4 and BaSO4 is less than the detection limit of 0.4%. A barite-sulfide geothermometer is obtained by combining HSO?4H2S and sulfide-H2S calibration data.Barite in the Derbyshire ore field, U.K., appears to have precipitated in isotopic equilibrium with water and sulfur in the ore fluid at temperatures less than 150°C. At the Tui Mine, New Zealand, the barite-water geothermometer indicates temperatures of late stage mineralization in the range 100–200°C. A temperature of 350 ± 20°C is obtained from the barite-pyrite geothermometer at the Yauricocha copper deposit, Peru, and oxygen isotope analyses of the barite are consistent with a magmatic origin for the ore fluids.  相似文献   

3.
Solution calorimetric measurements compared with solubility determinations from the literature for the same samples of gibbsite have provided a direct thermochemical cycle through which the Gibbs free energy of formation of [Al(OH)4 aq?] can be determined. The Gibbs free energy of formation of [Al(OH)4 aq?] at 298.15 K is ?1305 ± 1 kJ/mol. These heat-of-solution results show no significant difference in the thermodynamic properties of gibbsite particles in the range from 50 to 0.05 μm.The Gibbs free energies of formation at 298.15 K and 1 bar pressure of diaspore, boehmite and bayerite are ?9210 ± 5.0, ?918.4 ± 2.1 and ?1153 ± 2 kJ/mol based upon the Gibbs free energy of [A1(OH)4 aq?] calculated in this paper and the acceptance of ?1582.2 ± 1.3 and ?1154.9 ± 1.2 kJ/mol for the Gibbs free energy of formation of corundum and gibbsite, respectively.Values for the Gibbs free energy formation of [Al(OH)2 aq+] and [AlO2 aq?] were also calculated as ?914.2 ± 2.1 and ?830.9 ± 2.1 kJ/mol, respectively. The use of [AlC2 aq?] as a chemical species is discouraged.A revised Gibbs free energy of formation for [H4SiO4aq0] was recalculated from calorimetric data yielding a value of ?1307.5 ± 1.7 kJ/mol which is in good agreement with the results obtained from several solubility studies.Smoothed values for the thermodynamic functions CP0, (HT0 - H2980)T, (GT0 - H2980)T, ST0 - S00, ΔH?,2980 kaolinite are listed at integral temperatures between 298.15 and 800 K. The heat capacity of kaolinite at temperatures between 250 and 800 K may be calculated from the following equation: CP0 = 1430.26 ? 0.78850 T + 3.0340 × 10?4T2 ?1.85158 × 10?4T212 + 8.3341 × 106 T?2.The thermodynamic properties of most of the geologically important Al-bearing phases have been referenced to the same reference state for Al, namely gibbsite.  相似文献   

4.
Calculations based on approximately 350 new measurements (CaT-PCO2) of the solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C indicate the following values for the log of the equilibrium constants KC, KA, and KV respectively, for the reaction CaCO3(s) = Ca2+ + CO2?3: Log KC = ?171.9065 ? 0.077993T + 2839.319T + 71.595 log TLog KA = ?171.9773 ? 0.077993T + 2903.293T +71.595 log TLog KV = ?172.1295 ? 0.077993T + 3074.688T + 71.595 log T where T is in oK. At 25°C the logarithms of the equilibrium constants are ?8.480 ± 0.020, ?8.336 ± 0.020 and ?7.913 ± 0.020 for calcite, aragonite and vaterite, respectively.The equilibrium constants are internally consistent with an aqueous model that includes the CaHCO+3 and CaCO03 ion pairs, revised analytical expressions for CO2-H2O equilibria, and extended Debye-Hückel individual ion activity coefficients. Using this aqueous model, the equilibrium constant of aragonite shows no PCO2-dependence if the CaHCO+3 association constant is Log KCahco+3 = 1209.120 + 0.31294T — 34765.05T ? 478.782 log T between 0 and 90°C, corresponding to the value logKCahco+3 = 1.11 ± 0.07 at 25°C. The CaCO03 association constant was measured potentiometrically to be log KCaCO03 = ?1228.732 ? 0.299444T + 35512.75T + 485.818 log T between 5 and 80°C, yielding logKCaCO03 = 3.22 ± 0.14 at 25°C.The CO2-H2O equilibria have been critically evaluated and new empirical expressions for the temperature dependence of KH, K1 and K2 are log KH = 108.3865 + 0.01985076T ? 6919.53T ? 40.45154 log T + 669365.T2, log K1 = ?356.3094 ? 0.06091964T + 21834.37T + 126.8339 log T — 1684915.T2 and logK2 = ?107.8871 ? 0.03252849T + 5151.79/T + 38.92561 logT ? 563713.9/T2 which may be used to at least 250°C. These expressions hold for 1 atm. total pressure between 0 and 100°C and follow the vapor pressure curve of water at higher temperatures.Extensive measurements of the pH of Ca-HCO3 solutions at 25°C and 0.956 atm PCO2 using different compositions of the reference electrode filling solution show that measured differences in pH are closely approximated by differences in liquid-junction potential as calculated by the Henderson equation. Liquid-junction corrected pH measurements agree with the calculated pH within 0.003-0.011 pH.Earlier arguments suggesting that the CaHCO+3 ion pair should not be included in the CaCO3-CO2-H2O aqueous model were based on less accurate calcite solubility data. The CaHCO+3 ion pair must be included in the aqueous model to account for the observed PCO2-dependence of aragonite solubility between 317 ppm CO2 and 100% CO2.Previous literature on the solubility of CaCO3 polymorphs have been critically evaluated using the aqueous model and the results are compared.  相似文献   

5.
Potentiometric measurements in dilute sodium borate solutions with added alkali earth chlordie salts yield the following expressions for the dissociation constants of alkali earth borate ion pairs from 10 to 50°C:
pK(MgH2BO3+=1.266+0.001204 T
pK(CaH2BO3+=1.154+0.002170 T
pK(SrH2BO3+=1.033+0.001738 T
pK(BaH2BO3+=1.942+0.001850 T
where T is in °K. Enthalpies for the dissociation reactions at 25°C are less than 1 kcal./mole for all the alkali earth borate ion pairs.Values for pK(NaH2BO3°) from 5 to 55°C computed from the experimental data of Owen and King are in good agreement with those determined potentiometrically. The average value from both methods is 0.22 ± 0.1 at 25°C.Application to seawater of computed pK's for MgH2BO3+, CaH2BO3+ and NaH2BO30 yields an apparent dissociation constant for boric acid of 8.73 vs. 8.70 measured by Lyman, 8.68 by Buch and 8.73 by Byrne and Kester.  相似文献   

6.
Differences in the chemical composition of metamorphic and igneous pyroxene minerals may be attributed to a transfer reaction, which determines the Ca content of the minerals, and an exchange reaction, which determines the relative Mg:Fe2+ ratios. Natural data for associated Ca pyroxene (Cpx) and orthopyroxene (Opx) or pigeonite are combined with experimental data for Fe-free pyroxenes, to produce the following equations for the Cpx slope of the solvus surface: > 1080°C: T = 1000(0.468 + 0.246XCpx ? 0.123 ln (1–2 [Ca]))< 1080°C: T = 1000(0.054 + 0.608XCpx ? 0.304 ln (1–2 [Ca])), and the following equation for the temperature-dependence of the Mg-Fe distribution coefficient: T = 1130(ln Kp + 0.505), where T is absolute temperature, X is Fe2+(Mg + Fe2+)), [Ca] is Ca(Ca + Mg + Fe2+) in Cpx, and KD is the distribution coefficient, defined as XOpx/(1 ? XOpx) ÷ XCpx/(1 ? Cpx).The transfer and exchange equations form useful temperature indicators, and when applied to 9 sets of well-studied rocks, yield pairs of temperatures that are in good agreement. For example, temperatures obtained for the Bushveld Complex are 1020°C (solvus equation) and 980°C (exchange equation), based on 7 specimens. The uncertainty in these numbers, due to precision and accuracy errors, is estimated to be ±60°.  相似文献   

7.
Cyclic voltammetry has been done for Ni2+, Co2+, and Zn2+ in melts of diopside composition in the temperature range 1425 to 1575°C. Voltammetric curves for all three ions excellently match theoretical curves for uncomplicated, reversible charge transfer at the Pt electrode. This implies that the neutral metal atoms remain dissolved in the melt. The reference electrode is a form of oxygen electrode. Relative to that reference assigned a reduction potential of 0.00 volt, the values of standard reduction potential for the ions are E1 (Ni2+Ni0, diopside, 1500°C) = ?0.32 ± .01 V, E1 (Co2+Co0, diopside, 1500°C) = ?0.45 ± .02 V, and E1 (Zn2+Zn0, diopside, 1500°C) = ?0.53 ± .01 V. The electrode reactions are rapid, with first order rate constants of the order of 10?2 cm/sec. Diffusion coefficients were found to be 2.6 × 10?6 cm2/sec for Ni2+, 3.4 × 10?6 cm2/sec for Co2+, and 3.8 × 10?6 cm2/sec for Zn2+ at 1500°C. The value of E1 (Ni2+Ni0, diopside) is a linear function of temperature over the range studied, with values of ?0.35 V at 1425°C and ?0.29 V at 1575°C. At constant temperature the value of E1 (Ni2+Ni0, 1525°C) was not observed to vary with composition over the range CaO · MgO · 2SiO2 to CaO·MgO·3SiO2 or from 1.67 CaO·0.33MgO·2SiO2 to 0.5 CaO·1.5MgO·2SiO2. The value for the diffusion coefficient for Ni2+ decreased by an order of magnitude at 1525°C over the compositional range CaO · MgO · 1.25SiO2 to CaO · MgO · 3SiO2. This is consistent with a mechanism by which Ni2+ ions diffuse by moving from one octahedral coordination site to another in the melt, with the same Ni2+ species discharging at the cathode regardless of the SiO2 concentration in the melt.  相似文献   

8.
9.
Experimentally reversed quartz solubilities at 250°C and at 250, 500 and 1000 bars yield values of the logarithm of the molality of aqueous silica of ?2.126, ?2.087 and ?2.038, respectively. Extrapolation of quartz solubility to the saturation pressure of water at 250°C results in a log molality of aqueous silica of-2.168. These solubility determinations and analyses of fluid pressures in geothermal systems indicate that pressure is significant when calculating quartz equilibrium temperatures from silica concentrations in waters of deep thermal reservoirs.The results of this investigation, combined with other reported quartz solubility measurements, yielded a pressure-sensitive “silica geothermometer” for fluids that have undergone adiabatic steam loss of t°C = 874 ? 0.156P(log mSi(OH)4 · 2H2O)2 + 411 log mSi(OH4 · 2H2O + 51 (log mSi(OH)4 · 2H2O)2 where P is the fluid pressure in bars and mSi(OH)4 · 2H2O represents the molality of aqueous silica measured in surface samples. The geothermometer is applicable to solutions in equilibrium with quartz from 180°C to 340°C and fluid pressures from H2O saturation to 500 bars.  相似文献   

10.
Natural malachite is a well defined solid demonstrating reproducible solubility behavior over a wide range of pH. The following equilibrium constants associated with the malachite dissolution equilibrium at 25°C, 1 atm were determined:
Ksp = a2cu2+aCO32?K2wa2H+ = 3.5 ± 0.6 × 10?34
(infinite dilution)
K1sp = [Cu2+]2[CO2?3]K2wa2H+ = 10. ± 0.2 × 10?32
(0.72 ionic strength)
K′sp = m2Cu2+mCOsu2?3K2wa2H+ = 1.3 ± 0.1 × 10?28
(36.9‰ salinity seawater). The temperature dependence of a “mixed” equilibrium constant, Ksp+, of the form:
K2sp = [Cu2+]2mCO2?3K2wa2H+
has been measured at I = 0.72, yielding the relationship:
log K2sp = (? 9.8 ± 0.03) × 104(1T°K) + (1.52 ± 0.09)
within a 5–25°C temperature range. The effect of pressure on the solubility of malachite in water and seawater was estimated from partial molar volume and compressibility data. For 25 °C at infinite dilution K'sp (1000 bar)K'sp(0) = 240 and in seawater K′sp(1000)K'sp(0) = 44.Comparison of stoichiometric and apparent malachite equilibrium constants has been used to estimate the extent of copper(II) ion interaction at the ionic strength of seawater. In dilute carbonate medium (total alkalinity, TA = 2.4 meq/kg H2O, pH 8.3), 2.9% of total dissolved copper exists as the free copper(II) ion and in seawater (S = 36.9%., TA = 2.3 meq/kg H2O, pH = 8.1), [Cu2+]T(Cu) is 3.1%.Total dissolved copper levels of approximately 450–750 nMol/Kg are necessary to attain malachite saturation conditions in the open ocean. Observations of malachite particles suspended in seawater must be explained by precipitation or solid phase substitution reactions from localized environments rather than by direct precipitation from bulk seawater.  相似文献   

11.
HD Fractionation factors between epidote minerals and water, and between the AlO(OH) dimorphs boehmite and diaspore and water, have been determined between 150 and 650°C. Small water mineral ratios were used to minimise the effect of incongruent dissolution of epidote minerals. Waters were extracted and analysed directly by puncturing capsules under vacuum. Hydrogen diffusion effects were eliminated by using thick-walled capsules.HD Exchange rates are very fast between epidote and water (and between boehmite and water), complete exchange taking only minutes above 450°C but several months at 250°C. Exchange between zoisite and water (and between diaspore and water) is very much slower, and an interpolation method was necessary to determine fractionation factors at 450 and below.For the temperature range 300–650°C, the HD equilibrium fractionation factor (αe) between epidote and water is independent of temperature and Fe content of the epidote, and is given by 1000 In αepidote-H2Oe = ?35.9 ± 2.5, while below 300°C 1000 In αepidote-H2Oe = 29.2(106T2) ? 138.8, with a ‘cross-over’ estimated to occur at around 185°C. By contrast, zoisite-water fractionations fit the relationship 1000 In αzoisite-H2Oe = ? 15.07 (106T2) ? 27.73.All studied minerals have hydrogen bonding. Fractionations are consistent with the general relationship: the shorter the O-H -- O bridge, the more depleted is the mineral in D.On account of rapid exchange rates, natural epidotes probably acquired their H-isotope compositions at or below 200°C, where fractionations are near or above 0%.; this is in accord with the observation that natural epidotes tend to concentrate D relative to other coexisting hydrous minerals.  相似文献   

12.
The spectrophotometric measurements of chloro complexes of lead in aqueous HCl, NaCl, MgCl2 and CaCl2 solutions at 25°C have been analyzed using Pitzer's specific interaction equations. Parameters for activity coefficients of the complexes PbCl+, PbCl20 and PbCl3? have been determined for the various media. Values of K1 = 30.0 ± 0.6, K2 = 106.7 ± 2.1 and K3 = 73.0 ± 1.5 were obtained for the cumulative formation constants. [Pb2+ + nCl? → PbCln2?n)]. These values are in reasonable agreement with literature data. The Pitzer parameters for the PbCl ion pairs in various media were used to calculate the speciation of Pb2+ in an artificial seawater solution.  相似文献   

13.
The synthetic chelating agent ethylenediaminetetraacetic acid (EDTA) has been used to evaluate the stoichiometric solubility product of galena (PbS) at 298°K: Ks2 = aPb2+aHS?aH+ This method circumvents the possible uncertainties in the stoichiometry and stability of lead sulfide complexes. At infinite dilution, Log Ks2 = ?12.25 ±0.17, and at an ionic strength corresponding to seawater (I = 0.7 M), Log Ks2 = ?11.73 ± 0.05. Using the value of Ks2 at infinite dilution, and the free energies of formation of HS? and Pb2+ at 298°K (literature values), the free energy of formation of PbS at 298°K is computed to be ?79.1 ± 0.8 KJ/mol (?18.9 Kcal/mol). Galena is shown to be more than two orders of magnitude more soluble than indicated by calculations based on previous thermodynamic data.  相似文献   

14.
A linear correlation exists between the standard Gibbs free energies of formation of calcite-type carbonates (MCO3) and the corresponding conventional standard Gibbs free energies of formation of the aqueous divalent cations (M2+) at 25 °C and 1 bar ΔGMCO30 = m(ΔGf,M2+0) ? 141,200 cal · mole?1 where m is equal to 0.9715. This relationship enables prediction of the standard free energies of formation of numerous hypothetical carbonates with the calcite structure. Associated uncertainties typically range from about ± 250 to 600 cal · mole?1. An important consequence of the above correlation is that the thermodynamic equilibrium constant for the distribution of two trace elements M and N between carbonate mineral and aqueous solution at 25 °C and 1 bar is proportional to the free energy difference between the corresponding two aqueous ions: In KM-N = m ? 1298.15RG?f,M2+0 ? ΔG?f,N2+0)Combination of predicted standard free energies, entropies and volumes of carbonate minerals at 25°C and 1 bar with standard free energies of aqueous ions and the equation of state in Helgesonet al. (1981) enables prediction of the thermodynamic equilibrium constant for trace element distribution between carbonates and aqueous solutions at elevated temperatures and pressures. Interpretation of the thermodynamic equilibrium constant in terms of concentration ratios in the aqueous phase is considerably simplified if pairs of divalent trace elements are considered that have very similar ionic radii (e.g., Sr2+Pb2+, Mg2+Zn2+). In combination with data for the stabilities of complex ions in aqueous solutions, the above calculations enable useful limits to be placed on the concentrations of trace elements in hydrothermal solutions.  相似文献   

15.
The carbonato and hydrogencarbonato complexes of Mg2+ were investigated at 25 and 50° in solutions of the constant ClO4? molality (3 M) consisting preponderantly of NaClO4. The experimental data could be explained assuming the following equilibria: Mg2+ + CO2B + H2O ag MgHCO+3 + H+, log 1β1 = ?7.644 ± 0.017 (25°), ?7.462 ± 0.01 1 (50°), Mg2+ + 2 CO2g + 2 H2Oag Mg(HCO3)02 ± 2 H+, log 1β2 = ?15.00 ± 0.14 (25°), ?15.37 ± 0.39 (50°), Mg2+ + CO2g + H2Oag MgCO03 + 2 H+, log 1k1 = ?15.64 ± 0.06 (25°),?15.23 ± 0.02 (50°), with the assumption γMgCO30 = γMg(HCO3)02, ΔG0(I = 0) for the reaction MgCO03 + CO2g + H2O = Mg(HCO3)02 was estimated to be ?3.91 ± 0.86 and 0.6 ± 2.4 kJ/mol at 25 and 50°C, respectively. The abundance of carbonate linked Mg(II) species in fresh water systems is discussed.  相似文献   

16.
The solubility of rutile has been determined in a series of compositions in the K2O-Al2O3-SiO2 system (K1 = K2O(K2O + Al2O3) = 0.38–0.90), and the CaO-Al2O3-SiO2 system (C1 = CaO(CaO + Al2O3) = 0.47–0.59). Isothermal results in the KAS system at 1325°C, 1400°C, and 1475°C show rutile solubility to be a strong function of the K1 ratio. For example, at 1475°C the amount of TiO2 required for rutile saturation varies from 9.5 wt% (K1 = 0.38) to 11.5 wt% (K1 = 0.48) to 41.2 wt% (K1 = 0.90). In the CAS system at 1475°C, rutile solubility is not a strong function of C1. The amount of TiO2 required for saturation varies from 14 wt% (C1 = 0.48) to 16.2 wt% (C1 = 0.59).The solubility changes in KAS melts are interpreted to be due to the formation of strong complexes between Ti and K+ in excess of that needed to charge balance Al3+. The suggested stoichiometry of this complex is K2Ti2O5 or K2Ti3O7. In CAS melts, the data suggest that Ca2+ in excess of A13+ is not as effective at complexing with Ti as is K+. The greater solubility of rutile in CAS melts when C1 is less than 0.54 compared to KAS melts of equal K1 ratio results primarily from competition between Ti and Al for complexing cations (Ca vs. K).TiKβ x-ray emission spectra of KAS glasses (K1 = 0.43–0.60) with 7 mole% added TiO2, rutile, and Ba2TiO4, demonstrate that the average Ti-O bond length in these glasses is equal to that of rutile rather than Ba2TiO4, implying that Ti in these compositions is 6-fold rather than 4-fold coordinated. Re-examination of published spectroscopic data in light of these results and the solubility data, suggests that the 6-fold coordination polyhedron of Ti is highly distorted, with at least one Ti-O bond grossly undersatisfied in terms of Pauling's rules.  相似文献   

17.
Optical and analytical studies were performed on 400 N2 + CO2 gas bearing inclusions in dolomites and quartz from Triassic outcrops in northern Tunisia. Other fluids present include brines (NaCl and KCl bearing inclusions) and rare liquid hydrocarbons. At the time of trapping, such fluids were heterogeneous gas + brine mixtures. In hydrocarbon free inclusions the N2(N2+ CO2) mole ratio was determined using two different non-destructive and punctual techniques: Raman microprobe analysis, and optical estimation of the volume ratios of the different phases selected at low temperatures. In the observed range of compositions, the two methods agree reasonably well.The N2 + CO2 inclusions are divided into three classes of composition: (a) N2(N2 + CO2) > 0,57: Liquid nitrogen is always visible at very low temperature and homogenisation occurs in the range ?151°C to ? 147°C (nitrogen critical temperature) dry ice (solid CO2) sublimates between ?75°C and ?60°C; (b) 0,20 < N2(N2 + CO2) ? 0,57: liquid nitrogen is visible at very low temperature but dry ice melts on heating; liquid and gas CO2 homogenise to liquid phase between ?51°C to ?22°C; (c) N2(N2 + CO2) ? 0,20: liquid nitrogen is not visible even at very low temperature (?195°C) and liquid and gas CO2 homogenise to liquid phase between ?22°C and ?15°C. The observed phases changes are used to propose a preliminary phase diagram for the system CO2-N2 at low temperatures.Assuming additivity of partial pressures, isochores for the CO2-N2 inclusions have been computed. The intersection of these isochores with those for brine inclusions in the same samples may give the P and T of trapping of the fluids.  相似文献   

18.
CaCO3Ca(OH)2CaS serves as a model system for sulfide solubility in carbonatite magmas. Experiments at 1 kbar delineate fields for primary crystallization of CaCO3, Ca(OH)2 and CaS. The three fields meet at a ternary eutectic at 652°C with liquid composition (wt%): CaCO3 = 46.1%, Ca(OH)2 = 51.9%, CaS = 2.0%. Two crystallization sequences are possible for liquids that precipitate calcite, depending upon whether the liquid is on the low-CaS side, or the high-CaS side of the line connecting CaCO3 to the eutectic liquid. Low-CaS liquids precipitate no sulfide until the eutectic temperature is reached leading to sulfide enrichment. The higher-CaS liquids precipitate some sulfide above the eutectic temperature, but the sulfide content of the melt is not greatly depleted as the eutectic temperature is approached. Theoretical considerations indicate that sulfide solubility in carbonate melts will be directly proportional to ?S212 and inversely proportional to ?O212; it also is likely to be directly proportional to melt basicity, defined here by aCO32??CO2. A strong similarity exists in the processes which control sulfide solubility in carbonate and in silicate melts. By analogy with silicates, ferrous iron, which was absent in our experiments, may also exert an important influence on sulfide solubility in natural carbonatite magmas.  相似文献   

19.
We have calculated the total individual ion activity coefficients of carbonate and calcium, γTCO32? and γTCa2+, in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of γTCO23? and γTCa2+ are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of γTCO32? and γTCa2+ are independent of liquid junction errors and internally consistent with the value γTCl? = 0.651. By defining γTCa2+ and γTCO32? on a common scale (γTCl?), the product γTCa2+γTCO32? is independent of the assigned value of γCl? and may be determined directly from thermodynamic measurements in seawater. Using the value γTCa2+γTCO32? = 0.0067 and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978, Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.  相似文献   

20.
The 13C12C fractionation factors (CO2CH4) for the reduction of CO2 to CH4 by pure cultures of methane-producing bacteria are, for Methanosarcina barkeri at 40°C, 1.045 ± 0.002; for Methanobacterium strain M.o.H. at 40°C, 1.061 ± 0.002; and, for Methanobacterium thermoautotrophicum at 65°C, 1.025 ± 0.002. These observations suggest that the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2HCH3) approximating the observed CO2CH4 fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号