首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N -body code n-mody , which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to  109 M  and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime  ( a i, a e≪ a 0)  , where the motion of stars is either dominated by internal accelerations  ( a i≫ a e)  or constant external accelerations  ( a e≫ a i)  . In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime  ( a i∼ a e∼ a 0)  . This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal 14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.  相似文献   

2.
We present predictions for the line-of-sight velocity dispersion profiles of dwarf spheroidal galaxies and compare them to observations in the case of the Fornax dwarf. The predictions are made in the framework of standard dynamical theory of spherical systems with different velocity distributions. The stars are assumed to be distributed according to Sérsic laws with parameters fitted to observations. We compare predictions obtained assuming the presence of dark matter haloes (with density profiles adopted from N -body simulations) with those resulting from Modified Newtonian Dynamics (MOND). If the anisotropy of velocity distribution is treated as a free parameter, observational data for Fornax are reproduced equally well by models with dark matter and with MOND. If stellar mass-to-light ratio of 1 M/L is assumed, the required mass of the dark halo is     , two orders of magnitude larger than the mass in stars. The derived MOND acceleration scale is     . In both cases a certain amount of tangential anisotropy in the velocity distribution is needed to reproduce the shape of the velocity dispersion profile in Fornax.  相似文献   

3.
We calculate the structure of a wake generated by, and the dynamical friction force on, a gravitational perturber travelling through a gaseous medium of uniform density and constant background acceleration   g ext  , in the context of Modified Newtonian Dynamics (MOND). The wake is described as a linear superposition of two terms. The dominant part displays the same structure as the wake generated in the Newtonian gravity scaled up by a factor  μ−1( g ext/ a 0)  , where a 0 is the constant MOND acceleration and μ the interpolating function. The structure of the second term depends greatly on the angle between   g ext  and the velocity of the perturber. We evaluate the dynamical drag force numerically and compare our MOND results with the Newtonian case. We mention the relevance of our calculations to orbit evolution of globular clusters and satellites in a gaseous protogalaxy. Potential differences in the X-ray emission of gravitational galactic wakes in MOND and in Newtonian gravity with a dark halo are highlighted.  相似文献   

4.
We investigate the possibility of discriminating between modified Newtonian dynamics (MOND) and Newtonian gravity with dark matter, by studying the vertical dynamics of disc galaxies. We consider models with the same circular velocity in the equatorial plane (purely baryonic discs in MOND and the same discs in Newtonian gravity embedded in spherical dark matter haloes), and we construct their intrinsic and projected kinematical fields by solving the Jeans equations under the assumption of a two-integral distribution function. We find that the vertical velocity dispersion of deep MOND discs can be much larger than in the equivalent spherical Newtonian models. However, in the more realistic case of high surface density discs, this effect is significantly reduced, casting doubt on the possibility of discriminating between MOND and Newtonian gravity with dark matter by using current observations.  相似文献   

5.
We re-investigate the old problem of the survival of the five globular clusters (GCs) orbiting the Fornax dwarf galaxy in both standard and modified Newtonian dynamics (MOND). For the first time in the history of the topic, we use accurate mass models for the Fornax dwarf, obtained through Jeans modelling of the recently published line-of-sight (LOS) velocity dispersion data, and we are also not resigned to circular orbits for the GCs. Previously conceived problems stem from fixing the starting distances of the globulars to be less than half the tidal radius. We relax this constraint since there is absolutely no evidence for it and show that the dark matter (DM) paradigm, with either cusped or cored DM profiles, has no trouble sustaining the orbits of the two least massive GCs for a Hubble time almost regardless of their initial distance from Fornax. The three most massive globulars can remain in orbit as long as their starting distances are marginally outside the tidal radius. The outlook for MOND is also not nearly as bleak as previously reported. Although dynamical friction (DF) inside the tidal radius is far stronger in MOND, outside DF is negligible due to the absence of stars. This allows highly radial orbits to survive, but more importantly circular orbits at distances more than 85 per cent of Fornax's tidal radius to survive indefinitely. The probability of the GCs being on circular orbits at this distance compared with their current projected distances is discussed and shown to be plausible. Finally, if we ignore the presence of the most massive globular (giving it a large LOS distance), we demonstrate that the remaining four globulars can survive within the tidal radius for the Hubble time with perfectly sensible orbits.  相似文献   

6.
The modified Newtonian dynamics (MOND), suggested by Milgrom as an alternative to dark matter, implies that isothermal spheres with a fixed anisotropy parameter should exhibit a near-perfect relation between the mass and velocity dispersion of the form M ∝ σ  4. This is consistent with the observed Faber–Jackson relation for elliptical galaxies: a luminosity–velocity dispersion relation with large scatter. However, the observable global properties of elliptical galaxies comprise a three-parameter family; they lie on a 'fundamental plane' in a logarithmic space consisting of central velocity dispersion, effective radius ( r e) and luminosity. The scatter perpendicular to this plane is significantly less than that about the Faber–Jackson relation. I show here that, in order to match the observed properties of elliptical galaxies with MOND, models must deviate from being strictly isothermal and isotropic; such objects can be approximated by high-order polytropic spheres with a radial orbit anisotropy in the outer regions. MOND imposes boundary conditions on the inner Newtonian regions which restrict these models to a dynamical fundamental plane of the form where the exponents may differ from the Newtonian expectations ( α =2, γ =1). Scatter about this plane is relatively insensitive to the necessary deviations from homology.  相似文献   

7.
We compare orbits in a thin axisymmetric disc potential in Modified Newtonian Dynamics (MOND) with those in a thin disc plus near-spherical dark matter halo predicted by a ΛCDM cosmology. Remarkably, the amount of orbital precession in MOND is nearly identical to that which occurs in a mildly oblate CDM Galactic halo (potential flattening   q = 0.9  ), consistent with recent constraints from the Sagittarius stream. Since very flattened mass distributions in MOND produce rounder potentials than in standard Newtonian mechanics, we show that it will be very difficult to use the tidal debris from streams to distinguish between a MOND galaxy and a standard CDM galaxy with a mildly oblate halo.
If a galaxy can be found with either a prolate halo or one that is more oblate than   q ∼ 0.9  this would rule out MOND as a viable theory. Improved data from the leading arm of the Sagittarius dwarf – which samples the Galactic potential at large radii – could rule out MOND if the orbital pole precession can be determined to an accuracy of the order of  ±1°  .  相似文献   

8.
We study the evolution of globular clusters with mass spectra under the influence of the steady Galactic tidal field, including the effects of velocity anisotropy. Similarly to single-mass models, velocity anisotropy develops as the cluster evolves, but the degree of anisotropy is much smaller than in isolated clusters. Except for very early epochs of the cluster evolution, the velocity distributions of nearly all mass components become tangentially anisotropic at the outer parts. We examine how the mass function (MF) changes in time. Specifically, we find that the power-law index of the MF decreases monotonically with the total mass of the cluster, in agreement with previous findings based on isotropic models or N -body studies. This is also consistent with the behaviour of the observed slopes of MFs for a limited number of clusters. We attempt to compare our results with multimass King models, although it is almost impossible to fit the entire density profiles for all mass components. When the MF is fixed, the central densities of individual components show significant differences between Fokker–Planck and King models. We obtain 'best-fitting' multimass King models, for which the central density of individual components as well as the total density distribution agrees with the Fokker–Planck models by adjusting the MF. The MFs obtained in this way closely resemble the MF within the half-mass radius of the Fokker–Planck result. Also, we find that the local MFs predicted by Fokker–Planck calculations vary more rapidly with radius than best-fitting multimass King models. The projected velocity profiles for anisotropic models show significant flattening toward the tidal radius compared with the isotropic model. This is caused by the fact that the tangential velocity dispersion becomes dominant at the outer parts. Such a behaviour of velocity profile appears to be consistent with the observed profiles of the collapsed cluster M15.  相似文献   

9.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

10.
The dynamical mass of clusters of galaxies, calculated in terms of MOdified Newtonian Dynamics (MOND), is a factor of 2 or 3 times smaller than the Newtonian dynamical mass but remains significantly larger than the observed baryonic mass in the form of hot gas and stars in galaxies. Here I consider further the suggestion that the undetected matter might be in the form of cosmological neutrinos with mass of the order of 2 eV. If the neutrinos and baryons have comparable velocity dispersions and if the two components maintain their cosmological density ratio, then the electron density in the cores of clusters should be proportional to T 3/2, as appears to be true in non-cooling flow clusters. This is equivalent to the 'entropy floor' proposed to explain the steepness of the observed luminosity–temperature relation, but here preheating of the medium is not required. Two-fluid (neutrino–baryon) hydrostatic models of clusters, in the context of MOND, reproduce the observed luminosity–temperature relation of clusters. If the β law is imposed on the gas density distribution, then the self-consistent models predict the general form of the observed temperature profile in both cooling and non-cooling flow clusters.  相似文献   

11.
We describe Monte Carlo models for the dynamical evolution of the nearby globular cluster NGC 6397. The code includes treatments of two-body relaxation, most kinds of three- and four-body interactions involving primordial binaries and those formed dynamically, the Galactic tide and the internal evolution of both single and binary stars. We arrive at a set of initial parameters for the cluster which, after 12 Gyr of evolution, gives a model with a fairly satisfactory match to the surface brightness profile, the velocity dispersion profile and the luminosity function in two fields. We describe in particular those aspects of the evolution which distinguish this cluster from M4, which has a roughly similar mass and Galactocentric distance, but a qualitatively different surface brightness profile. Within the limitations of our modelling, we conclude that the most plausible explanation for the difference is fluctuations: both clusters are post-collapse objects, but sometimes have resolvable cores and sometimes not.  相似文献   

12.
We compute the Milky Way potential in different cold dark matter (CDM) based models, and compare these with the MOdified Newtonian Dynamics (MOND) framework. We calculate the axial ratio of the potential in various models, and find that isopotentials are less spherical in MOND than in CDM potentials. As an application of these models, we predict the escape velocity as a function of the position in the Galaxy. This could be useful in comparing with future data from planned or already-underway kinematic surveys (RAVE, SDSS, SEGUE, SIM , Gaia or the hypervelocity stars survey). In addition, the predicted escape velocity is compared with the recently measured high proper motion velocity of the Large Magellanic Cloud (LMC). To bind the LMC to the Galaxy in a MOND model, while still being compatible with the RAVE-measured local escape speed at the Sun's position, we show that an external field modulus of less than  0.03 a 0  is needed.  相似文献   

13.
We study the distribution of dark matter in dwarf spheroidal galaxies by modelling the moments of their line-of-sight velocity distributions. We discuss different dark matter density profiles, both cuspy and possessing flat density cores. The predictions are made in the framework of standard dynamical theory of two-component (stars and dark matter) spherical systems with different velocity distributions. We compare the predicted velocity dispersion profiles to observations in the case of Fornax and Draco dwarfs. For isotropic models the dark haloes with cores are found to fit the data better than those with cusps. Anisotropic models are studied by fitting two parameters, dark mass and velocity anisotropy, to the data. In this case all profiles yield good fits, but the steeper the cusp of the profile, the more tangential is the velocity distribution required to fit the data. To resolve this well-known degeneracy of density profile versus velocity anisotropy, we obtain predictions for the kurtosis of the line-of-sight velocity distribution for models found to provide best fits to the velocity dispersion profiles. It turns out that profiles with cores typically yield higher values of kurtosis which decrease more steeply with distance than the cuspy profiles, which will allow us to discriminate between the profiles once the kurtosis measurements become available. We also show that with present quality of the data the alternative explanation of velocity dispersions in terms of Modified Newtonian Dynamics cannot yet be ruled out.  相似文献   

14.
Using astrometric plates of Shanghai Observatory spanning a period of 29 years, the absolute proper motion of the Galactic globular cluster M79 was measured. Adopting the distance and radial velocity given by Harris (1999), its present space velocity was derived; then by taking the Galactic gravitational potential model proposed by Allen and Santillan (1991), its past orbital parameters in the Galactic system were derived. We also discuss the uncertainties in kinematical studies of globular clusters based on the use of proper motion data.  相似文献   

15.
We use kinematic data of 103 dwarf galaxies, obtained from the Sloan Digital Sky Survey catalog, to test the Milgromian dynamics (MOND) inside a galactic void. From this data, we compute the line-of-sight velocity dispersions of the dwarf galaxies in the frameworks of MOND and Newtonian dynamics without invoking any dark matter. The prediction for the line-of-sight velocity dispersions from MOND of 53 selected dwarf galaxies is compared with their measured values. For appropriate mass-to-light ratios in the range 1 to 5 for each individual dwarf galaxy, our results for the line-of-sight velocity dispersions predicted by MOND are more compatible with observations than those predicted by Newtonian dynamics.  相似文献   

16.
The velocity dispersion of stars in the solar neighbourhood thin disc increases with time after star formation. Nordström et al. performed the most recent observations to constrain the age–velocity dispersion relation. They fitted the age–velocity dispersion relations of each Galactic cardinal direction space velocity component, U (towards the Galactic Centre), V (in the direction of Galactic rotation) and W (towards the North Galactic Pole), with power laws and interpreted these as evidence for continuous heating of the disc in all directions throughout its lifetime. We revisit these relations with their data and use the results of Famaey et al. to show that structure in the local velocity distribution function distorts the in-plane ( U and V ) velocity distributions away from Gaussian so that a dispersion is not an adequate parametrization of their functions. The age–σ W relation can however be constrained because the sample is well phase-mixed vertically. We do not find any local signature of the stellar warp in the Galactic disc. Vertical disc heating does not saturate at an early stage. Our new result is that a power law is not required by the data: disc heating models that saturate after ∼4.5 Gyr are equally consistent with observations.  相似文献   

17.
Strong gravitational lensing by galaxies in MOdified Newtonian Dynamics (MOND) has until now been restricted to spherically symmetric models. These models were able to account for the size of the Einstein ring of observed lenses, but were unable to account for double-imaged systems with collinear images, as well as four-image lenses. Non-spherical models are generally cumbersome to compute numerically in MOND, but we present here a class of analytic non-spherical models that can be applied to fit double-imaged and quadruple-imaged systems. We use them to obtain a reasonable MOND fit to 10 double-imaged systems, as well as to the quadruple-imaged system Q2237+030 which is an isolated bulge-disc lens producing an Einstein cross. However, we also find five double-imaged systems and three quadruple-imaged systems for which no reasonable MOND fit can be obtained with our models. We argue that this is mostly due to the intrinsic limitation of the analytic models, even though the presence of small amounts of additional dark mass on galaxy scales in MOND is also plausible.  相似文献   

18.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

19.
The Galactic globular clusters are believed to be among the most ancient objects for which reliable ages can be determined. As the Universe can not be younger than the oldest object it contains, the oldest Galactic globular clusters provide one of the few most important constraints that one can have on cosmological models. Latest estimates indicate that the absolute age of the oldest globular clusters is 14 ± 3 Gyr. The calibration of absolute ages is still subject to observational and theoretical uncertainties at the ≈ 20% level, and represents a major limitation on our ability to test cosmological models. However, relative ages are starting to be much better known due to the super colour-magnitude diagrams that have been obtained through the use of CCD detectors on large telescopes and the Hubble Space Telescope. The available data are consistent with the majority of Galactic globular clusters being virtually coeval but with a minority having significantly lower ages. The existence of “prehistoric” clusters with ages of around 50 Gyr, as hypothesised in the quasi-steady state cosmology, should be readily recognised.  相似文献   

20.
Although very successful in explaining the observed conspiracy between the baryonic distribution and the gravitational field in spiral galaxies without resorting to dark matter (DM), the modified Newtonian dynamics (MOND) paradigm still requires DM in X-ray bright systems. Here, to get a handle on the distribution and importance of this DM, and thus on its possible form, we deconstruct the mass profiles of 26 X-ray emitting systems in MOND, with temperatures ranging from 0.5 to 9 keV. Initially, we compute the MOND dynamical mass as a function of radius, then subtract the known gas mass along with a component of galaxies which include the cD galaxy with   M / L K = 1  . Next, we test the compatibility of the required DM with ordinary massive neutrinos at the experimental limit of detection  ( m ν= 2 eV)  , with density given by the Tremaine–Gunn limit. Even by considering that the neutrino density stays constant and maximal within the central 100 or 150 kpc (which is the absolute upper limit of a possible neutrino contribution there), we show that these neutrinos can never account for the required DM within this region. The natural corollary of this finding is that, whereas clusters  ( T ≳ 3 keV)  might have most of their mass accounted for if ordinary neutrinos have a 2 eV mass, groups  ( T ≲ 2 keV)  cannot be explained by a 2 eV neutrino contribution. This means that, for instance, cluster baryonic dark matter (CBDM, Milgrom) or even sterile neutrinos would present a more satisfactory solution to the problem of missing mass in MOND X-ray emitting systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号