首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The latitudinal variation of Saturn’s tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 μm thermal emission spectroscopy on the planet’s nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn’s cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric).Saturn’s NH3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck).  相似文献   

2.
Wet adiabatic atmospheric models are computed for the four Jovian planets. Possible cloud-forming condensates considered are H2O ice, aqueous NH3 solution, NH4SH, and solid NH3, CH4, and Ar. Some techniques for computer calculation of condensation in a multiphase system of variable composition are discussed. Nominal models are computed for all four-planets, and the effects of variations in composition and different pressure-temperature regimes are investigated in detail for Jupiter. The meaning of the calculated cloud densities and their relation to the actual densities are discussed. The computed atmospheric profiles represent average conditions, subject to considerable local variations.  相似文献   

3.
We have investigated the formation of jet scale meridional circulation cells on Jupiter in response to radiative and zonal momentum forcing. In the framework of semi-geostrophic theory, the meridional streamfunction is described by an elliptic equation with a source term dependent on the sum of the latitudinal derivative of the radiative forcing and the vertical derivative of the zonal momentum forcing. Using this equation with analytic terms similar to the assumed forcing on Jupiter, we obtained two set of atmospheric circulations cells, a stratospheric and a tropospheric one. A possible shift in the overturning circulation of the high and deep atmosphere can be induced by breaking the latitudinal alignment of radiative heating with the enforced belt and zones. A series of numerical simulations was conducted with the Jovian GCM OPUS, which was initiated with observational data obtained from the Cassini CIRS temperature cross-section and a corresponding geostrophic zonal wind field. Newtonian forcing of potential temperature as well as zonal momentum was applied respectively towards latitudinally and vertically uniform equilibrium fields. In accordance with the analytic illustrations two rows of jet scale circulation cells were created. The stratospheric circulation showed the distribution of upwelling over zones and downwelling over belts, consistent with cloud observations. The tropospheric cells featured a partial reversal of the downward vertical velocity over the belts and a considerable reduction of the upward movement over the zones in the domain, consistent with recent detections of high water clouds and lightning in belts. We also used the modeled new forcing fields as source terms for the semi-geostrophic Poisson equation to attribute the origin of the modeled secondary circulation. In this analysis, the stratospheric circulation cells observed in the model are primarily generated in response to radiative forcing, while momentum forcing induces the shifted configurations in the deep atmosphere.  相似文献   

4.
We examine the effects of NH3 ice particle clouds in the atmosphere of Jupiter on outgoing thermal radiances. The cloud models are characterized by a number density at the cloud base, by the ratio of the scale height of the vertical distribution of particles (Hp) to the gas scale height (Hg), and by an effective particle radius. NH3 ice particle-scattering properties are scaled from laboratory measurements. The number density for the various particle radius and scale height models is inferred from the observed disk average radiance at 246 cm?1, and preliminary lower limits on particle sizes are inferred from the lack of apparent NH3 absorption features in the observed spectral radiances as well as the observed minimum flux near 2100 cm?1. We find lower limits on the particle size of 3 μm if Hp/Hg = 0.15, or 10μmif Hp/Hg = 0.50 or 0.05. NH3 ice particles are relatively dark near the far-infrared and 8.5-μm atmospheric windows, and the outgoing thermal radiances are not very sensitive to various assumptions about the particle-scattering function as opposed to radiances at 5 μm, where particles are relatively brighter. We examined observations in these three different spectral window regions which provide, in principle, complementary constraints on cloud parameters. Characterization of the cloud scale height is difficult, but a promising approach is the examination of radiances and their center-to-limb variation in spectral regions where there is significant opacity provided by gases of known vertical distribution. A blackbody cloud top model can reduce systematic errors due to clouds in temperature sounding to the level of 1K or less. The NH3 clouds provide a substantial influence on the internal infrared flux field near the 600-mbar level.  相似文献   

5.
P.G.J. Irwin  K. Sihra  F.W. Taylor 《Icarus》2005,176(2):255-271
New measurements of the low-temperature near-infrared absorption of methane (Sihra, 1998, Laboratory measurements of near-infrared methane bands for remote sensing of the jovian atmosphere, Ph.D. thesis, University of Oxford) have been combined with existing, longer path-length, higher-temperature data of Strong et al. (1993, Spectral parameters of self- and hydrogen-broadened methane from 2000 to 9500 cm−1 for remote sounding of the atmosphere of Jupiter, J. Quant. Spectrosc. Radiat. Trans. 50, 309-325) and fitted with band models. The combined data set is found to be more consistent with previous low-temperature methane absorption measurements than that of Strong et al. (1993, J. Quant. Spectrosc. Radiat. Trans. 50, 309-325) but covers the same wider wavelength range and accounts for both self- and hydrogen-broadening conditions. These data have been fitted with k-coefficients in the manner described by Irwin et al. (1996, Calculated k-distribution coefficients for hydrogen- and self-broadened methane in the range 2000-9500 cm−1 from exponential sum fitting to band modelled spectra, J. Geophys. Res. 101, 26,137-26,154) and have been used in multiple-scattering radiative transfer models to assess their impact on our previous estimates of the jovian cloud structure obtained from Galileo Near-Infrared Mapping Spectrometer (NIMS) observations (Irwin et al., 1998, Cloud structure and atmospheric composition of Jupiter retrieved from Galileo NIMS real-time spectra, J. Geophys. Res. 103, 23,001-23,021; Irwin et al., 2001, The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5-μm opacity, Icarus 149, 397-415; Irwin and Dyudina, 2002, The retrieval of cloud structure maps in the equatorial region of Jupiter using a principal component analysis of Galileo/NIMS data, Icarus 156, 52-63). Although significant differences in methane opacity are found at cooler temperatures, the difference in the optical depth of the atmosphere due to methane is found to diminish rapidly with increasing pressure and temperature and thus has negligible effect on the cloud structure inferred at deeper levels. Hence the main cloud opacity variation is still found to peak at around 1-2 bar using our previous analytical approach, and is thus still in disagreement with Galileo Solid State Imager (SSI) determinations (Banfield et al., 1998, Jupiter's cloud structure from Galileo imaging data, Icarus 135, 230-250; Simon-Miller et al., 2001, Color and the vertical structure in Jupiter's belts, zones and weather systems, Icarus 154, 459-474) which place the main cloud deck near 0.9 bar. Further analysis of our retrievals reveals that this discrepancy is probably due to the different assumptions of the two analyses. Our retrievals use a smooth vertically extended cloud profile while the SSI determinations assume a thin NH3 cloud below an extended haze. When the main opacity in our model is similarly assumed to be due to a thin cloud below an extended haze, we find the main level of cloud opacity variation to be near the 1 bar level—close to that determined by SSI and moderately close to the expected condensation level of ammonia ice of 0.85 bar, assuming that the abundance of ammonia on Jupiter is (7±1)×10−4 (Folkner et al., 1998, Ammonia abundance in Jupiter's atmosphere derived from the attenuation of the Galileo probe's radio signal, J. Geophys. Res. 103, 22,847-22,855; Atreya et al., 1999, A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin, Planet. Space Sci. 47, 1243-1262). However our data in the 1-2.5 μm range have good height discrimination and our lowest estimate of the cloud base pressure of 1 bar is still too great to be consistent with the most recent estimates of the ammonia abundance of 3.5 × solar. Furthermore the observed limited spatial distribution of ammonia ice absorption features on Jupiter suggests that pure ammonia ice is only present in regions of localised vigorous uplift (Baines et al., 2002, Fresh ammonia ice clouds in Jupiter: spectroscopic identification, spatial distribution, and dynamical implications, Icarus 159, 74-94) and is subsequently rapidly modified in some way which masks its pure absorption features. Hence we conclude that the main cloud deck on Jupiter is unlikely to be composed of pure ammonia ice and instead find that it must be composed of either NH4SH or some other unknown combination of ammonia, water, and hydrogen sulphide and exists at pressures of between 1 and 2 bar.  相似文献   

6.
The in situ measurements of the Galileo Probe Mass Spectrometer (GPMS) were expected to constrain the abundances of the cloud-forming condensible volatile gases: H2O, H2S, and NH3. However, since the probe entry site (PES) was an unusually dry meteorological system—a 5-μm hotspot—the measured condensible volatile abundances did not follow the canonical condensation-limited vertical profiles of equilibrium cloud condensation models (ECCMs) such as Weidenschilling and Lewis (1973, Icarus 20, 465-476). Instead, the mixing ratios of H2S and NH3 increased with depth, finally reaching well-mixed equilibration levels at pressures far greater than the lifting condensation levels, whereas the mixing ratio of H2O in the deep well-mixed atmosphere could not be measured. The deep NH3 mixing ratio (with respect to H2) of (6.64±2.54)×10−4 from 8.9-11.7 bar GPMS data is consistent with the NH3 profile from probe-to-orbiter signal attenuation (Folkner et al., 1998, J. Geophys. Res. 103, 22847-22856), which had an equilibration level of about 8 bar. The GPMS deep atmosphere H2S mixing ratio of (8.9±2.1)×10−5 is the only measurement of Jupiter's sulfur abundance, with a PES equilibration level somewhere between 12 and 15.5 bar. The deepest water mixing ratio measurement is (4.9±1.6)×10−4 (corresponding to only about 30% of the solar abundance) at 17.6-20.9 bar, a value that is probably much smaller than Jupiter's bulk water abundance. The 15N/14N ratio in jovian NH3 was measured at (2.3±0.3)×10−3 and may provide the best estimate of the protosolar nitrogen isotopic ratio. The GPMS methane mixing ratio is (2.37±0.57)×10−3; although methane does not condense on Jupiter, we include its updated analysis in this report because like the condensible volatiles, it was presumably brought to Jupiter in icy planetesimals. Our detailed discussion of calibration and error analysis supplements previously reported GPMS measurements of condensible volatile mixing ratios (Niemann et al., 1998, J. Geophys. Res. 103, 22831-22846; Atreya et al., 1999, Planet. Space Sci. 47, 1243-1262; Atreya et al., 2003, Planet. Space Sci. 51, 105-112) and the nitrogen isotopic ratio (Owen et al., 2001b, Astrophys. J. Lett. 553, L77-L79). The approximately three times solar abundance of NH3 (along with CH4 and H2S) is consistent with enrichment of Jupiter's atmosphere by icy planetesimals formed at temperatures <40 K (Owen et al., 1999, Nature 402 (6759), 269-270), but would imply that H2O should be at least 3×solar as well. An alternate model, using clathrate hydrates to deliver the nitrogen component to Jupiter, predicts O/H?9×solar (Gautier et al., 2001, Astrophys. J. 550 (2), L227-L230). Finally we show that the measured condensible volatile vertical profiles in the PES are consistent with column-stretching or entraining downdraft scenarios only if the basic state (the pre-stretched column or the entrainment source region) is described by condensible volatile vertical profiles that are drier than those in the equilibrium cloud condensation models. This dryness is supported by numerous remote sensing results but seems to disagree with observations of widespread clouds on Jupiter at pressure levels predicted by equilibrium cloud condensation models for ammonia and H2S.  相似文献   

7.
Observations of Uranus were made in September 2009 with the Gemini-North telescope in Hawaii, using both the NIFS and NIRI instruments. Observations were acquired in Adaptive Optics mode and have a spatial resolution of approximately 0.1″.NIRI images were recorded with three spectral filters to constrain the overall appearance of the planet: J, H-continuum and CH4(long), and long slit spectroscopy measurements were also made (1.49-1.79 μm) with the entrance slit aligned on Uranus’ central meridian. To acquire spectra from other points on the planet, the NIFS instrument was used and its 3″ × 3″ field of view stepped across Uranus’ disc. These observations were combined to yield complete images of Uranus at 2040 wavelengths between 1.476 and 1.803 μm.The observed spectra along Uranus central meridian were analysed with the NEMESIS retrieval tool and used to infer the vertical/latitudinal variation in cloud optical depth. We find that the 2009 Gemini data perfectly complement our observations/conclusions from UKIRT/UIST observations made in 2006-2008 and show that the north polar zone at 45°N has continued to steadily brighten while that at 45°S has continued to fade. The improved spatial resolution of the Gemini observations compared with the non-AO UKIRT/UIST data removes some of the earlier ambiguities with our previous analyses and shows that the opacity of clouds deeper than the 2-bar level does indeed diminish towards the poles and also reveals a darkening of the deeper cloud deck near the equator, perhaps coinciding with a region of subduction. We find that the clouds at 45°N,S lie at slightly lower pressures than the clouds at more equatorial latitudes, which suggests that they might possibly be composed of a different condensate, presumably CH4 ice, rather than H2S or NH3 ice, which is assumed for the deeper cloud. In addition, analysis of the centre-to-limb curves of both the Gemini/NIFS and earlier UKIRT/UIST IFU observations shows that the main cloud deck has a well-defined top, and also allows us to better constrain the particle scattering properties.Overall, Uranus appeared to be less convectively active in 2009 than in the previous 3 years, which suggests that now the northern spring equinox (which occurred in 2007) is passed the atmosphere is settling back into the quiescent state seen by Voyager 2 in 1986. However, a number of discrete clouds were still observed, with one at 15°N found to lie near the 500 mb level, while another at 30°N, was seen to be much higher at near the 200 mb level. Such high clouds are assumed to be composed of CH4 ice.  相似文献   

8.
Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477–1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15–0.25″.The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune’s atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ∼2 bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08 bar in the bright mid-latitude region at 20–40°S to as deep as 0.2 bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator.A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ∼0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ∼0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus’ atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g ∼ 0.6–0.7 (i.e. reasonably strongly forward scattering).Numerous bright clouds are seen near Neptune’s south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (∼2 bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1 h. However, the observations are not entirely consistent with a single non-evolving cloud feature, which suggests that the cloud opacity or albedo may vary very rapidly at this level at a rate not seen in any other giant-planet atmosphere.  相似文献   

9.
We analyze the thermal infrared spectra of Jupiter obtained by the Cassini-CIRS instrument during the 2000 flyby to infer temperature and cloud density in the jovian stratosphere and upper troposphere. We use an inversion technique to derive zonal mean vertical profiles of cloud absorption coefficient and optical thickness from a narrow spectral window centered at 1392 cm−1 (7.18 μm). At this wavenumber atmospheric absorption due to ammonia gas is very weak and uncertainties in the ammonia abundance do not impact the cloud retrieval results. For cloud-free conditions the atmospheric transmission is limited by the absorption of molecular hydrogen and methane. The gaseous optical depth of the atmosphere is of order unity at about 1200 mbar. This allows us to probe the structure of the atmosphere through a layer where ammonia cloud formation is expected. The results are presented as height vs latitude cross-sections of the zonal mean cloud optical depth and cloud absorption coefficient. The cloud optical depth and the cloud base pressure exhibit a significant variability with latitude. In regions with thin cloud cover (cloud optical depth less than 2), the cloud absorption coefficient peaks at 1.1±0.05 bar, whereas in regions with thick clouds the peak cloud absorption coefficient occurs in the vicinity of 900±50 mbar. If the cloud optical depth is too large the location of the cloud peak cannot be identified. Based on theoretical expectations for the ammonia condensation pressure we conclude that the detected clouds are probably a system of two different cloud layers: a top ammonia ice layer at about 900 mbar covering only limited latitudes and a second, deeper layer at 1100 mbar, possibly made of ammonium hydrosulfide.  相似文献   

10.
Eric Chassefière 《Icarus》2009,204(1):137-271
The observations of methane made by the PFS instrument onboard Mars Express exhibit a definite correlation between methane mixing ratio, water vapor mixing ratio, and cloud optical depth. The recent data obtained from ground-based telescopes seem to confirm the correlation between methane and water vapor. In order to explain this correlation, we suggest that the source of gaseous methane is atmospheric, rather than at the solid surface of the planet, and that this source may consist of metastable submicronic particles of methane clathrate hydrate continuously released to the atmosphere from one or several clathrate layers at depth, according to the phenomenon of “anomalous preservation” evidenced in the laboratory. These particles, lifted up to middle atmospheric levels due to their small size, and therefore filling the whole atmosphere, serve as condensation nuclei for water vapor. The observed correlation between methane and water vapor mixing ratios could be the signature of the decomposition of the clathrate crystals by condensation-sublimation processes related to cloud activity. Under the effect of water condensation on crystal walls, metastability could be broken and particles be eroded, resulting in a subsequent irreversible release of methane to the gas phase. Using PFS data, and according to our hypothesis, the lifetime of gaseous methane is estimated to be smaller than an upper limit of 6 ± 3 months, much smaller than the lifetime of 300 yr calculated from atmospheric chemical models. The reason why methane has a short lifetime might be the occurrence of heterogeneous chemical decomposition of methane in the subsurface, where it is known since Viking biology experiments that oxidants efficiently decompose organic matter. If true, it is shown by using existing models of H2O2 penetration in the regolith that methane could prevent H2O2 from penetrating in the subsurface, and further oxidizing the soil, at depths larger than a few millimeters. The present source of methane clathrate, acting over the last few hundred thousand or million years, could have given rise to the thin CO2-ice layer covering the permanent water ice south polar cap. The hypothesis proposed in this paper requires, to be validated, a number of laboratory experiments studying the stability of methane clathrates in martian atmospheric conditions, and the kinetics and amplitude of clathrate particle erosion in presence of condensing water vapor. Detailed future observations of methane, and associated modeling, will allow to more accurately quantify the production rate of methane clathrate, its temporal variability at seasonal scale, and possibly to locate the source(s) of clathrates at the surface.  相似文献   

11.
The rates and altitudes for the dissociation of atmospheric constituents of Titan are calculated for solar UV, solar wind protons, interplanetary electrons, Saturn magnetospheric particles, and cosmic rays. The resulting integrated synthesis rates of organic products range from 102–103 g cm?2 over 4.5 × 109 years for high-energy particle sources to 1.3 × 104 g cm?2 for UV at λ < 1550 A?, and to 5.0 × 105 g cm?2 if λ > 1550 A? (acting primarily on C2H2, C2H4, and C4H2) is included. The production rate curves show no localized maxima corresponding to observed altitudes of Titan's hazes and clouds. For simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at 2825 km. Such condensates comprise the principal cloud mass, with molecules of greater complexity condensing at higher altitudes. The scattering optical depths of the condensates of molecules produced in the Titanian mesosphere are as great as ~ 102/(particulate radius, μm) if column densities of condensed and gas phases are comparable. Visible condensation hazes of more complex organic compounds may occur at altitudes up to ~ 3060 km provided only that the abundance of organic products declines with molecular mass no faster than laboratory experiments indicate. Typical organics condensing at 2900 km have molecular masses = 100–150 Da. At current rates of production the integrated depth of precipitated organic liquids, ices, and tholins produced over 4.5 × 109 years ranges from a minimum ~ 100 m to kilometers if UV at λ > 1550 A? is important. The organic nitrogen content of this layer is expected to be ~ 10?1?10?3 by mass.  相似文献   

12.
Close to 2000 laboratory measurements of the microwave opacity and refractivity of gaseous NH3 in an H2/He atmosphere have been conducted in the 1.1-20 cm wavelength range (1.5-27 GHz) at pressures from 30 mbar to 12 bar and at temperatures from 184 to 450 K. The mole fraction of NH3 ranged from 0.06 to 6% with some additional measurements of pure NH3. The high accuracy of these results have enabled development of a new model for the opacity of NH3 in a H2/He atmosphere under jovian conditions. The model employs the Ben-Reuven lineshape applied to the published inversion line center frequencies and intensities of NH3 (JPL Catalog—[Pickett, H.M., Poynter, R.L., Cohen, E.A., Delitsky, M.L., Pearson, J.C., Müller, H.S.P., 1998. J. Quant. Spectrosc. Radiat. Trans. 60, 883-890]) with empirically-fitted line parameters for H2 and He broadening, and for the self-broadening of some previously unmeasured ammonia inversion lines. The new model for ammonia opacity will provide reliable results for temperatures from 150 to 500 K, at pressures up to 50 bar and at frequencies up to 40 GHz. These results directly impact the retrieval of jovian atmospheric constituent abundances from the Galileo Probe radio signal absorption measurements, from microwave emission measurements conducted with Earth-based radio telescopes and with the future NASA Juno mission, and studies of Saturn's atmosphere conducted with the Cassini Radio Science Experiment and the Cassini RADAR 2.1 cm passive radiometer.  相似文献   

13.
Pores present in ices in the solar system do not remain unchanged. In isothermal conditions they shrink while in a thermal gradient they migrate towards the higher temperature and escape so that the ice densifies. This motion has been investigated for pure H2O- and CO2-ices in a very simple one-dimensional model assuming uniform thermal conductivity and temperature gradient. The results indicate that the densification of H2O-ice is so slow that it could be significant only for icy satellites having an internal heat source. On the other hand, CO2-ice densifies orders of magnitude faster and the effect should be important for the CO2 component of cometary nuclei. No effect is expected for icy planetary rings.  相似文献   

14.
D. Stauffer  C.S. Kiang 《Icarus》1974,21(2):129-146
For purified binary gas mixtures like NH3H2O or HClH2O, partial pressures appreciably greater than the two saturation partial pressures are needed to condense the gas mixture into small solution droplets (“homogeneous hetero-molecular nucleation”). Thus without foreign nuclei, clouds are not as easily formed as in the theories of Lewis; the latter should be valid only if large condensation nuclei are available. We calculate here from classical homogeneous heteromolecular nucleation theory the threshold partial pressures necessary to achieve droplet nucleation for the gas mixtures NH3H2O (Jupiter,…), HClH2O (Venus), H2SO4H2O (Venus), and C2H5OHH2O (laboratory). In the last case, theory and experiment agree satisfactorily. If no “dust” particles are available as condensation nuclei, then we expect in Jupiter's atmosphere the cloud base level to be around 40 km above the 400K level instead of 10–25 km in Lewis' models (1969) (similar upward shifts for the outer Jovian planets). For Venus, our corrections make the formation of HClH2O clouds less probable for the 60-km layer at 0°C. If H2SO4 is formed by (photo-)chemical oxidation of SO2 and if clouds are formed at that level where the H2SO4 production is largest, then the cloud base levels for H2SO4H2O mixture clouds will not be shifted by our nucleation effects. For more reliable predictions, one needs more accurate data on the water vapor content of the planetary atmospheres and laboratory experiments testing the theoretically predicted nucleation behavior of these gaseous mixtures.  相似文献   

15.
Guido Visconti 《Icarus》1981,45(3):638-652
We present computations of the photodissociation coefficients for NH3, N2H4, PH3, and H2S in the Jupiter atmosphere. The calculations take into account multiple scattering and absorption using the radiative-transfer method known as δ-Eddington approximation. The atmospheric models include two cloud layers of variable thickness and haze layers above the upper cloud and between the clouds. One of the results of the radiative computations deal with the reflectivity of the Jovian atmosphere as a function of wavelength. A comparison with available data on the albedo of the planet gives some important indications about mixing ratios and distributions of gases and aerosols. The results for the photolysis rates are compared with similar rates obtained by considering either the direct flux or the flux determined by the molecular gas absorption alone. The latter is usually the approximation used in aeronomic models. The results of this comparison show that a considerable difference exists with direct flux photodissociation but significant differences with molecular absorption flux exist only in atmospheric regions where photodissociation is relatively small.  相似文献   

16.
Using new laboratory spectra, we have calculated the real and imaginary parts of the index of refraction of amorphous and crystalline H2O-ice from 20 to 150 K in the frequency range 9000-3800 cm−1 (1.1-2.6 μm) at a spectral resolution of 1 cm−1. These optical constants can be used to create model spectra for comparison to spectra from Solar System objects. We also analyzed the differences between the amorphous and crystalline H2O-ice spectra, including weakening of bands and shifting of bands to shorter wavelength in amorphous H2O-ice spectra. We have also observed two spectrally distinct phases of amorphous H2O-ice.  相似文献   

17.
Spatially resolved reflectivities from 3000 to 6600 Å of three positions from the center to the limb of the Jovian Equator, North Equatorial Belt, and North Tropical Zone are analyzed to determine the vertical distribution and wavelength dependence of various sources of blue and uv absorption. Six different models of the distribution of absorbing dust particles are examined. In each model, the variation of dust optical depth and cloud single-scattering albedo are determined. Only those models having dust above the upper NH3 cloud layer will fit the data. The high altitude dust distribution is approximately uniform over the three regions examined. The contrast in reflectivity of the belts and zones may be modeled by a different cloud single-scattering albedo in the different regions.  相似文献   

18.
A two-dimensional kinetic model calculation for the water group species (H2O, H2, O2, OH, O, H) in Europa's atmosphere is undertaken to determine its basic compositional structure, gas escape rates, and velocity distribution information to initialize neutral cloud model calculations for the most important gas tori. The dominant atmospheric species is O2 at low altitudes and H2 at higher altitudes with average day-night column densities of 4.5×1014 and 7.7×1013 cm−2, respectively. H2 forms the most important gas torus with an escape rate of ∼2×1027 s−1 followed by O with an escape rate of ∼5×1026 s−1, created primarily as exothermic O products from O2 dissociation by magnetospheric electrons. The circumplanetary distributions of H2 and O are highly peaked about the satellite location and asymmetrically distributed near Europa's orbit about Jupiter, have substantial forward clouds extending radially inward to Io's orbit, and have spatially integrated cloud populations of 4.2×1033 molecules for H2 and 4.0×1032 atoms for O that are larger than their corresponding populations in Europa's local atmosphere by a factor of ∼200 and ∼1000, respectively. The cloud population for H2 is a factor of ∼3 times larger than that for the combined cloud population of Io's O and S neutral clouds and provides the dominant neutral population beyond the so-called ramp region at 7.4-7.8 RJ in the plasma torus. The calculated brightness of Europa's O cloud on the sky plane is very dim at the sub-Rayleigh level. The H2 and O tori provide a new source of europagenic molecular and atomic pickup ions for the thermal plasma and introduce a neutral barrier in which new plasma sinks are created for the cooler iogenic plasma as it is transported radially outward and in which new sinks are created to alter the population and pitch angle distribution of the energetic plasma as it is transported radially inward. The europagenic instantaneous pickup ion rates are peaked at Europa's orbit, dominate the iogenic pickup ion rates beyond the ramp region, and introduce new secondary plasma source peaks in the solution of the plasma transport problem. The H2 torus is identified as the unknown Europa gas torus that creates both the observed loss of energetic H+ ions at Europa's orbit and the corresponding measured ENA production rate for H.  相似文献   

19.
The atmospheric transmission window at 2.7 μm in Jupiter's atmosphere was observed at a spectral resolution of 0.1 cm?1 from the Kuiper Airborne Observatory. From analysis of the CH4 abundance (~80m-am) and the H2O abundance (<0.0125cm-am) it was determined that the penetration depth of solar flux at 2.7 μm is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 μm and other recent results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. The search for H2S in Jupiter's atmosphere yielded an upper limit of ~0.1cm-am. The corresponding limit to the elemental abundance ratio [S]/[H] was ~1.7 × 10?8, about 10?3 times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.  相似文献   

20.
The wide spectral coverage and extensive spatial, temporal, and phase-angle mapping capabilities of the Visual Infrared Mapping Spectrometer (VIMS) onboard the Cassini-Huygens Orbiter are producing fundamental new insights into the nature of the atmospheres of Saturn and Titan. For both bodies, VIMS maps over time and solar phase angles provide information for a multitude of atmospheric constituents and aerosol layers, providing new insights into atmospheric structure and dynamical and chemical processes. For Saturn, salient early results include evidence for phosphine depletion in relatively dark and less cloudy belts at temperate and mid-latitudes compared to the relatively bright and cloudier Equatorial Region, consistent with traditional theories of belts being regions of relative downwelling. Additional Saturn results include (1) the mapping of enhanced trace gas absorptions at the south pole, and (2) the first high phase-angle, high-spatial-resolution imagery of CH4 fluorescence. An additional fundamental new result is the first nighttime near-infrared mapping of Saturn, clearly showing discrete meteorological features relatively deep in the atmosphere beneath the planet’s sunlit haze and cloud layers, thus revealing a new dynamical regime at depth where vertical dynamics is relatively more important than zonal dynamics in determining cloud morphology. Zonal wind measurements at deeper levels than previously available are achieved by tracking these features over multiple days, thereby providing measurements of zonal wind shears within Saturn’s troposphere when compared to cloudtop movements measured in reflected sunlight. For Titan, initial results include (1) the first detection and mapping of thermal emission spectra of CO, CO2, and CH3D on Titan’s nightside limb, (2) the mapping of CH4 fluorescence over the dayside bright limb, extending to ∼ ∼750 km altitude, (3) wind measurements of ∼ ∼0.5 ms−1, favoring prograde, from the movement of a persistent (multiple months) south polar cloud near 88° S latitude, and (4) the imaging of two transient mid-southern-latitude cloud features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号