首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L‐chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar‐39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L‐chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.  相似文献   

2.
Novato, a newly observed fall in the San Francisco Bay area, is a shocked and brecciated L6 ordinary chondrite containing dark and light lithologies. We have investigated the U‐Pb isotope systematics of coarse Cl‐apatite grains of metamorphic origin in Novato with a large geometry ion microprobe. The U‐Pb systematics of Novato apatite reveals an upper intercept age of 4472 ± 31 Ma and lower intercept age of 473 ± 38 Ma. The upper intercept age is within error identical to the U‐Pb apatite age of 4452 ± 21 Ma measured in the Chelyabinsk LL5 chondrite. This age is interpreted to reflect a massive collisional resetting event due to a large impact associated with the peak arrival time at the primordial asteroid belt of ejecta debris from the Moon‐forming giant impact on Earth. The lower intercept age is consistent with the most precisely dated Ar‐Ar ages of 470 ± 6 Ma of shocked L chondrites, and the fossil meteorites and extraterrestrial chromite relicts found in Ordovician limestones with an age of 467.3 ± 1.6 Ma in Sweden and China. The lower intercept age reflects a major disturbance related to the catastrophic disruption of the L chondrite parent body most likely associated with the Gefion asteroid family, which produced an initially intense meteorite bombardment of the Earth in Ordovician period and reset and degassed at least approximately 35% of the L chondrite falls today. We predict that the 470 Ma impact event is likely to be found on the Moon and Mars, if not Mercury.  相似文献   

3.
It has been proposed that all L chondrites resulted from an ongoing collisional cascade of fragments that originated from the formation of the ~500 Ma old asteroid family Gefion, located near the 5:2 mean‐motion resonance with Jupiter in the middle Main Belt. If so, L chondrite pre‐atmospheric orbits should be distributed as expected for that source region. Here, we present contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary chondrite fall at Creston, CA (here reclassified to L5/6). Creston's short 1.30 ± 0.02 AU semimajor axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt. Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston's small meteoroid size and low 4.23 ± 0.07° inclination indicate a short dynamical lifetime against collisions. This suggests, instead, that Creston originated most likely in the inner asteroid belt and was delivered via the ν6 resonance. The U‐Pb systematics of Creston apatite reveals a Pb‐Pb age of 4,497.1 ± 3.7 Ma, and an upper intercept U‐Pb age of 4,496.7 ± 5.8 Ma (2σ), circa 70 Ma after formation of CAI, as found for other L chondrites. The K‐Ar (age ~4.3 Ga) and U,Th‐He (age ~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U‐Pb age is poorly defined as 770 ± 320 Ma. So far, the three known L chondrites that impacted on orbits with semimajor axes a <2.0 AU all have high (>3 Ga) K‐Ar ages. This argues for a source of some of our L chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of Gefion family debris stretching across the 3:1 mean‐motion resonance.  相似文献   

4.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

5.
Abstract— Near‐Earth asteroid (25143) 1998 SF36 is a planned target for the Japanese MUSES‐C sample return mission. High signal‐to‐noise and relatively high‐resolution (50 Å) visible and near‐infrared spectroscopic measurements obtained during this asteroid's favorable 2001 apparition reveal it to have a red‐sloped S(IV)‐type spectrum with strong 1 and 2 μm absorption bands analogous to those measured for ordinary chondrite meteorites. This red slope, which is the primary spectral difference between (25143) 1998 SF36 and ordinary chondrite meteorites, is well modeled by the spectrum of 0.05% nanophase iron (npFe0) proposed as a weathering mechanism by Pieters et al. (2000). Asteroid 1998 SF36 appears to have a surface composition corresponding to that of ordinary chondrite meteorites and is most similar in spectral characteristics and modeled olivine/pyroxene content to the LL chondrite class.  相似文献   

6.
We have numerically integrated the orbits of 18 fictitious fragments ejected from the asteroid 6 Hebe, an S-type object about 200km across which is located very close to theg=g 6 (orv 6) secular resonance at a semimajor axis of 2.425AU and a (proper) inclination of 15° .0. A realistic ejection velocity distribution, with most fragments escaping at relative speeds of a few hundredsm/s, has been assumed. In four cases we have found that the resonance pumps up the orbital eccentricity of the fragments to values >0.6, which result into Earth-crossing, within a time span of 1Myr; subsequent close encounters with the Earth cause strongly chaotic orbital evolution. The closest Earth and Mars encounters recorded in our integration occur at miss distances of a few thousandths ofAU, implying collision lifetimes <109 yr. Some other fragments affected by the secular resonance become Mars-crossers but not Earth-crossers over the integration time span. Two bodies are injected into the 3 : 1 mean motion resonance with Jupiter, and also display macroscopically chaotic behaviour leading to Earth-crossing. 6 Hebe is the first asteroid for which a realistic collisional/dynamical evolutionroute to generate meteorites has been fully demonstrated. It may be the parent body of one of the ordinary chondrite classes.  相似文献   

7.
Our understanding of planet formation depends in fundamental ways on what we learn by analyzing the composition, mineralogy, and petrology of meteorites. Yet, it is difficult to deduce the compositional and thermal gradients that existed in the solar nebula from the meteoritic record because, in most cases, we do not know where meteorites with different chemical and isotopic signatures originated. Here we developed a model that tracks the orbits of meteoroid-sized objects as they evolve from the ν6 secular resonance to Earth-crossing orbits. We apply this model to determining the number of meteorites accreted on the Earth immediately after a collisional disruption of a D∼200-km-diameter inner-main-belt asteroid in the Flora family region. We show that this event could produce fossil chondrite meteorites found in an ≈470 Myr old marine limestone quarry in southern Sweden, the L-chondrite meteorites with shock ages ≈470 Myr falling on the Earth today, as well as asteroid-sized fragments in the Flora family. To explain the measured short cosmic-ray exposure ages of fossil meteorites our model requires that the meteoroid-sized fragments were launched at speeds >500 m s−1 and/or the collisional lifetimes of these objects were much shorter immediately after the breakup event than they are today.  相似文献   

8.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

9.
Abstract– Miller Range (MIL) 05029 is a slowly cooled melt rock with metal/sulfide depletion and an Ar‐Ar age of 4517 ± 11 Ma. Oxygen isotopes and mineral composition indicate that it is an L chondrite impact melt, and a well‐equilibrated igneous rock texture with a lack of clasts favors a melt pool over a melt dike as its probable depositional setting. A metallographic cooling rate of approximately 14 °C Ma?1 indicates that the impact occurred at least approximately 20 Ma before the Ar‐Ar closure age of 4517 Ma, possibly even shortly after accretion of its parent body. A metal grain with a Widmanstätten‐like pattern further substantiates slow cooling. The formation age of MIL 05029 is at least as old as the Ar‐Ar age of unshocked L and H chondrites, indicating that endogenous metamorphism on the parent asteroid was still ongoing at the time of impact. Its metallographic cooling rate of approximately 14 °C Ma?1 is similar to that typical for L6 chondrites, suggesting a collisional event on the L chondrite asteroid that produced impact melt at a minimum depth of 5–12 km. The inferred minimum crater diameter of 25–60 km may have shattered the 100–200 km diameter L chondrite asteroid. Therefore, MIL 05029 could record the timing and petrogenetic setting for the observed lack of correlation of cooling rates with metamorphic grades in many L chondrites.  相似文献   

10.
The Kumtag 016 strewn field was found in the eastern part of the Kumtag desert, Xinjiang Province, China. In this study, 24 recovered meteorites have been characterized by a suite of different analytical techniques to investigate their petrography, mineralogy, bulk trace elements, noble gas isotopic composition, density, and porosity. We attribute to the strewn field 22 L5 chondrites with shock stage S4 and weathering grade W2–W3. Two different meteorites, Kumtag 021, an L4 chondrite and Kumtag 032, an L6 chondrite, were recognized within the strewn field area. Moreover, Kumtag 003, an H5 chondrite, was previously found in the same area. We infer that the Kumtag 016 strewn field most likely consists of at least four distinct meteorite falls. The effects of terrestrial weathering on the studied meteorites involve sulfide/metal alteration, chemical changes (Sr, Ba, Pb, and U enrichments and depletion in Cr, Co, Ni, and Cs abundances), and physical modifications (decrease of grain density and porosity). Measurements of the light noble gases indicate that the analyzed Kumtag L5 samples contain solar wind-implanted noble gases with a 20Ne/22Ne ratio of ~12.345. The cosmic-ray exposure (CRE) ages of the L5 chondrites are in a narrow range (3.6 ± 1.4 Ma to 5.2 ± 0.4 Ma). For L4 chondrite Kumtag 021 and L6 chondrite Kumtag 032, the CRE ages are 5.9 ± 0.4 Ma and 4.7 ± 0.8 Ma, respectively.  相似文献   

11.
Abstract– Two new fragments of the Almahata Sitta meteorite and a sample of sand from the related strewn field in the Nubian Desert, Sudan, were analyzed for two to six carbon aliphatic primary amino acids by ultrahigh performance liquid chromatography with UV‐fluorescence detection and time‐of‐flight mass spectrometry (LC‐FT/ToF‐MS). The distribution of amino acids in fragment #25, an H5 ordinary chondrite, and fragment #27, a polymict ureilite, were compared with results from the previously analyzed fragment #4, also a polymict ureilite. All three meteorite fragments contain 180–270 parts‐per‐billion (ppb) of amino acids, roughly 1000‐fold lower than the total amino acid abundance of the Murchison carbonaceous chondrite. All of the Almahata Sitta fragments analyzed have amino acid distributions that differ from the Nubian Desert sand, which primarily contains l ‐α‐amino acids. In addition, the meteorites contain several amino acids that were not detected in the sand, indicating that many of the amino acids are extraterrestrial in origin. Despite their petrological differences, meteorite fragments #25 and #27 contain similar amino acid compositions; however, the distribution of amino acids in fragment #27 was distinct from those in fragment #4, even though both are polymict ureilites from the same parent body. Unlike in CM2 and CR2/3 meteorites, there are low relative abundances of α‐amino acids in the Almahata Sitta meteorite fragments, which suggest that Strecker‐type chemistry was not a significant amino acid formation mechanism. Given the high temperatures that asteroid 2008 TC3 appears to have experienced and lack of evidence for aqueous alteration on the asteroid, it is possible that the extraterrestrial amino acids detected in Almahata Sitta were formed by Fischer‐Tropsch/Haber‐Bosch type gas‐grain reactions at elevated temperatures.  相似文献   

12.
V. Carruba  J.A. Burns  W. Bottke 《Icarus》2003,162(2):308-327
Asteroid families are groupings of minor planets identified by clustering in their proper orbital elements; these objects have spectral signatures consistent with an origin in the break-up of a common parent body. From the current values of proper semimajor axes a of family members one might hope to estimate the ejection velocities with which the fragments left the putative break-up event (assuming that the pieces were ejected isotropically). However, the ejection velocities so inferred are consistently higher than N-body and hydro-code simulations, as well as laboratory experiments, suggest. To explain this discrepancy between today’s orbital distribution of asteroid family members and their supposed launch velocities, we study whether asteroid family members might have been ejected from the collision at low speeds and then slowly drifted to their current positions, via one or more dynamical processes. Studies show that the proper a of asteroid family members can be altered by two mechanisms: (i) close encounters with massive asteroids, and (ii) the Yarkovsky non-gravitational effect. Because the Yarkovsky effect for kilometer-sized bodies decreases with asteroid diameter D, it is unlikely to have appreciably moved large asteroids (say those with D > 15 km) over the typical family age (1-2 Gyr).For this reason, we numerically studied the mobility of family members produced by close encounters with main-belt, non-family asteroids that were thought massive enough to significantly change their orbits over long timescales. Our goal was to learn the degree to which perturbations might modify the proper a values of all family members, including those too large to be influenced by the Yarkovsky effect. Our initial simulations demonstrated immediately that very few asteroids were massive enough to significantly alter relative orbits among family members. Thus, to maximize gravitational perturbations in our 500-Myr integrations, we investigated the effect of close encounters on two families, Gefion and Adeona, that have high encounter probabilities with 1 Ceres, by far the largest asteroid in the main belt. Our results show that members of these families spreads in a of less than 5% since their formation. Thus gravitational interactions cannot account for the large inferred escape velocities.The effect of close encounters with massive asteroids is, however, not entirely negligible. For about 10% of the simulated bodies, close encounters increased the “inferred” ejection velocities from sub-100 m/s to values greater than 100 m/s, beyond what hydro-code and N-body simulations suggest are the maximum possible initial ejection velocity for members of Adeona and Gefion with D > 15 km. Thus this mechanism of mobility may be responsible for the unusually high inferred ejection speeds of a few of the largest members of these two families.To understand the orbital evolution of the entire family, including smaller members, we also performed simulations to account for the drift of smaller asteroids caused by the Yarkovsky effect. Our two sets of simulations suggest that the two families we investigated are relatively young compared to larger families like Koronis and Themis, which have estimated ages of about 2 Byr. The Adeona and Gefion families seems to be no more than 600 and 850 Myr old, respectively.  相似文献   

13.
We present new irradiation experiments performed on the enstatite chondrite Eagle (EL6) and the mesosiderite Vaca Muerta. These experiments were performed with the aims of (a) quantifying the spectral effect of the solar wind on their parent asteroid surfaces and (b) identifying their parent bodies within the asteroid belt. For Vaca Muerta we observe a reddening and darkening of the reflectance spectrum with progressive irradiation, consistent with what is observed in the cases of silicates and silicate-rich meteorites such as OCs and HEDs. For Eagle we observe little spectral variation, and therefore we do not expect to observe a significant spectral difference between EC meteorites and their parent bodies. We evaluated possible parent bodies for both meteorites by comparing their VNIR spectra (before and after irradiation) with those of ∼400 main-belt asteroids. We found that 21 Lutetia (Rosetta's forthcoming fly-by target) and 97 Klotho (both Xc types in the new Bus-DeMeo taxonomy) have physical properties compatible with those of enstatite chondrite meteorites while 201 Penelope, 250 Bettina and 337 Devosa (all three are Xk types in the Bus-DeMeo taxonomy) are compatible with the properties of mesosiderites.  相似文献   

14.
Abstract— We examined an improved system for extraction of carbon from meteorites, using a vacuum‐tight RF melting method. Meteorite samples mixed with an iron combustion accelerator, including a specific amount of carbon (0.052%), were combusted in a RF furnace (LECO HF‐10). 14CO2 extracted from the meteorite was diluted with a known amount of nearly 14C‐free CO2, evolved from the iron accelerator on combustion. The 14C activities of the recently fallen Holbrook (L6) and Mt. Tazerzait (L5) meteorites were measured by this method. The mean value was 56.5 ± 3.0 dpm/kg, which is similar to the values reported for recently fallen L6 chondrites. Furthermore, terrestrial ages were measured for four Antarctic meteorites: 1.8 ± 0.5 kyr for Yamato (Y‐) 75097 (L6), 1.8 ± 0.5 kyr for Y‐75108 (L6), and 0.1 ± 0.1 kyr for Y‐74192 (H5). For Y‐74190 (L6), an apparent age of 0.8 ± 0.5 kyr was calculated. After consideration of the shielding effect by using 22Ne/21Ne values, we obtained about 1.8 kyr for the terrestrial age of this chondrite. The five samples Y‐74190, Y‐75097, and Y‐75108, together with Y‐75102 (L6) and Y‐75271 (L6), have been reported to be paired and fragments of an L‐chondrite shower (Honda 1981; Takaoka 1987). The result of this work and literature data for the latter two samples confirmed that they are paired. More discussion and experimental work are needed for other recently fallen meteorites, both for L and H chondrites, and a correction for the shielding effect should be done to determine a more reliable terrestrial age.  相似文献   

15.
Abstract— We present noble gas analyses of sediment‐dispersed extraterrestrial chromite grains recovered from ?470 Myr old sediments from two quarries (Hällekis and Thorsberg) and of relict chromites in a coeval fossil meteorite from the Gullhögen quarry, all located in southern Sweden. Both the sediment‐dispersed grains and the meteorite Gullhögen 001 were generated in the L‐chondrite parent body breakup about 470 Myr ago, which was also the event responsible for the abundant fossil meteorites previously found in the Thorsberg quarry. Trapped solar noble gases in the sediment‐dispersed chromite grains have partly been retained during ?470 Myr of terrestrial residence and despite harsh chemical treatment in the laboratory. This shows that chromite is highly retentive for solar noble gases. The solar noble gases imply that a sizeable fraction of the sediment‐dispersed chromite grains are micrometeorites or fragments thereof rather than remnants of larger meteorites. The grains in the oldest sediment beds were rapidly delivered to Earth likely by direct injection into an orbital resonance in the inner asteroid belt, whereas grains in younger sediments arrived by orbital decay due to Poynting‐Robertson (P‐R) drag. The fossil meteorite Gullhögen 001 has a low cosmic‐ray exposure age of ?0.9 Myr, based on new He and Ne production rates in chromite determined experimentally. This age is comparable to the ages of the fossil meteorites from Thorsberg, providing additional evidence for very rapid transfer times of material after the L‐chondrite parent body breakup.  相似文献   

16.
Abstract— The Meteoritical Bulletin No. 96 contains a total of 1590 newly approved meteorite names with their relevant data. These include 12 from specific locations within Africa, 76 from northwest Africa, 9 from the Americas, 13 from Asia, 1 from Australia, 2 from Europe, 950 from Antarctica recovered by the Chinese Antarctic Research Expedition (CHINARE), and 527 from the American Antarctic program (ANSMET). Among these meteorites are 4 falls, Almahata Sitta (Sudan), Sulagiri (India), Ash Creek (United States), and Maribo (Denmark). Almahata Sitta is an anomalous ureilite and is debris from asteroid 2008 TC3 and Maribo is a CM2 chondrite. Other highlights include a lunar meteorite, a CM1 chondrite, and an anomalous IVA iron.  相似文献   

17.
Earth-based spectral measurements and NEAR Shoemaker magnetometer, X-ray, and near-infrared spectrometer data are all consistent with Eros having a bulk composition and mineralogy similar to ordinary chondrite meteorites (OC). By comparing the bulk density of 433 Eros (2.67±0.03 g/cm3) with that of OCs (3.40 g/cm3), we estimate the total porosity of the asteroid to be 21-33%. Macro (or structural) porosity, best estimated to be ∼20%, is constrained to be between 6 and 33%. We conclude that Eros is a heavily fractured body, but we find no evidence that it was ever catastrophically disrupted and reaccumulated into a rubble pile.  相似文献   

18.
Abstract— Platinum‐group element (PGE) concentrations and ratios obtained from samples of the Clearwater East impact melt have been used along with other siderophile element ratios to classify the impacting projectile as a carbonaceous chondrite. This is at odds with recent chromium isotope analyses that suggest ordinary chondrite‐type material is present. The present study reviews and reinterprets the available PGE data in the light of new PGE data from meteorites and concludes that the PGE ratios in the impact melt are most consistent with ordinary (possibly type‐L) chondrite source material, not carbonaceous chondrites. Therefore the structure was most probably formed by the impact of an asteroid composed of material similar to ordinary chondrites.  相似文献   

19.
Hydrous carbonaceous microclasts are by far the most abundant foreign fragments in stony meteorites and mostly resemble CI1‐, CM2‐, or CR2‐like material. Their occurrence is of great importance for understanding the distribution and migration of water‐bearing volatile‐rich matter in the solar system. This paper reports the first finding of a strongly hydrated microclast in a Rumuruti chondrite. The R3‐6 chondrite Northwest Africa 6828 contains a 420 × 325 μm sized angular foreign fragment exhibiting sharp boundaries to the surrounding R‐type matrix. The clast is dominantly composed of magnetite, pyrrhotite, rare Ca‐carbonate, and very rare Mg‐rich olivine set in an abundant fine‐grained phyllosilicate‐rich matrix. Phyllosilicates are serpentine and saponite. One region of the clast is dominated by forsteritic olivine (Fa<2) supported by a network of interstitial Ca‐carbonate. The clast is crosscut by Ca‐carbonate‐filled veins and lacks any chondrules, calcium‐aluminum‐rich inclusions, or their respective pseudomorphs. The hydrous clast contains also a single grain of the very rare phosphide andreyivanovite. Comparison with CI1, CM2, and CR2 chondrites as well as with the ungrouped C2 chondrite Tagish Lake shows no positive match with any of these types of meteorites. The clast may, thus, either represent a fragment of an unsampled lithology of the hydrous carbonaceous chondrite parent asteroids or constitute a sample from an as yet unknown parent body, maybe even a comet. Rumuruti chondrites are a unique group of highly oxidized meteorites that probably accreted at a heliocentric distance >1 AU between the formation regions of ordinary and carbonaceous chondrites. The occurrence of a hydrous microclast in an R chondrite attests to the presence of such material also in this region at least at some point in time and documents the wide distribution of water‐bearing (possibly zodiacal cloud) material in the solar system.  相似文献   

20.
Abstract– The collection of approximately 3300 meteorites from the Queen Alexandra Range (QUE) area, Antarctica, is dominated by more than 2000 chondrites classified as either L5 or LL5. Based on concentrations of the cosmogenic radionuclides 10Be, 26Al, 36Cl, and 41Ca in the metal and stone fraction of 16 QUE L5 or LL5 chondrites, we conclude that 13 meteorites belong to a single meteorite shower, QUE 90201, with a large preatmospheric size and a terrestrial age of 125 kyr. Members of this shower have properties typical of L (e.g., pyroxene composition) and LL chondrites (e.g., metal abundance and composition), as well as properties intermediate between the L and LL groups (e.g., olivine composition), and is thus best described as an L/LL5 chondrite. Based on comparison with model calculations, the measured radionuclide concentrations in the metal and stone fractions of QUE 90201 indicate irradiation in an object with a preatmospheric radius of approximately 150 cm, representing one of the largest chondrites known so far. Based on the abundance of small L5 and LL5 chondrites at QUE and their distinct mass distribution, we conclude that the QUE 90201 shower includes up to 2000 fragments with a total recovered mass of 60–70 kg, <1% of the preatmospheric mass of approximately 50,000 kg. The mass distribution of the QUE 90201 shower suggests that the meteoroid experienced catastrophic atmospheric fragmentation(s), either because it was a fragile object or it had a high entry velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号