首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Aha Lake is a seasonal anoxic water system in the southwest of Guiyang City, Guizhou Province, China. Seasonal variations in SO42- concentrations and their isotopic compositions in lake water as well as in the tributaries were investigated in this study. The results showed that sulfate concentrations in river water range from 0.94 to 6.52 mmol/L and their δ34S values range from -14.9‰ and 0.9‰, while lake water has sulfate concentrations ranging from 1.91 to 2.79 mmol/L, and δ34S values from -9.8‰ to -5.9‰. It is suggested that coal mining drainage is the major source of SO42- in the Aha Lake. Rainfall, sewage discharge, sulfide oxidation and gypsum dissolution have made only limited contributions. Different depth-dependent distributions of dissolved SO42- and δ34S were de-veloped for both DB and LJK in summer and winter. Due to water overturn, δ34S values display homogenous vertical distributions in winter and spring. While in summer and autumn, significant positive shifts of δ34S were clearly ob-served in epilimnion and bottom strata as a result of water stratification. High δ34S values in epilimnion may result from the retention of rainwater during water stratification. Dissimilatory sulfate reduction by bacteria was thought to be responsible for the increase of δ34S value in hypolimnion.  相似文献   

2.
Water samples from the Wujiang River, a typical karst river system, were analyzed for major ion concentrations and δ^34S values of dissolved sulfate in order to identify the sources of sulfate, quantify the sulfate export flux and understand the role of sulfur cycling in chemical weathering rate of carbonate. Spatial variations in sulfate concentration and sulfur isotopic composition of tributaries over the catchment area are obvious, allowing to decipher S sources between rocks and atmosphere. According to the variations in sulfate concentration and isotopic composition, it is inferred that sulfate ions in the upper-reach river waters may have three sources, rain water, sulfate resultant from oxidation of pyrite in coal, and sulfate from sulfide deposits. In the lower reaches, the S isotopic composition of the samples lies mainly on a mixing trend between evaporite sulfate and rainwater sulfate, the contribution of sulfate from oxidation of pyrite being lesser. A pronounced seasonal variation in both content and isotopic composition of sulfate characterizes the Wujiang River. The average sulfate concentration of the waters is 0.65 mmol/L in winter, 0.17 mmol/L higher than that in summer. River water δ^34S values range from -15.7‰ to 18.9‰ in winter, while the δ^34S values of river waters in summer vary to a lesser extent than in winter, from -11.5‰ to 8.3‰. The δ^34S values of the main stream range from -6.7‰ to -3.9‰ in summer, averaging 3‰ lower than in winter. This indicates that in summer, when the discharge increases, the contribution of a source enriched in light isotopes to the atmosphere or the oxidation of pyrite in coal is more important.  相似文献   

3.
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of ?7.8‰ and ?53.0‰ for δ18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from ?10.6‰ to ?6.0‰ with an average of ?8.4‰ for δ18O and from ?85‰ to ?46‰ with an average of ?63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from ?11.6‰ to ?8.8‰ with an average of ?10.2‰ for δ18O and from ?89‰ to ?63‰ with an average of ?76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.  相似文献   

4.
Boron has two stable isotopes (^10B and ^11B) with relative abundances of about 20% and 80%, respectively. Boron isotopic ratios in natural materials show a huge range of variations, from -70‰ to +60‰, when expressed with the classical δ^11B notation. Most of these isotopic variations occur at the surface of the Earth. Hence, boron isotopic composition can be used as a sensitive tracer in geochemical study, for instance, to identify the different sources of contamination and factors controlling the salinity of groundwater. During the last decade, boron isotopes have been used to discriminate between the influences of seawater intrusion and anthropogenic discharge. But few of those researches can precisely identify the different sources of contamination. We measured the boron concentrations and boron isotopic ratios of groundwater samples collected in Guiyang City, as well as the major ions. The results indicate that the major ion composition of the groundwater in the investigated area is mainly controlled by the interactions between water and the dominant rock i.e. carbonates. All the water compositions are characterized by high concentrations of Ca^2+, Mg^2+, HCO3^-, SO4^2-, and NO3^-, which are the dominant contaminants. Both dissolved boron concentrations and isotopic ratios show large variations among the ground waters, from 2 μg/L to 90 μg/L and from -6‰ to +26‰, respectively. The boron concentrations and isotopic ratios indicate that the river across the studied city has been seriously contaminated by urban discharge. Boron concentrations of fiver water samples varied from 20 μg/L to 140 μg/L, with an average δ^11B value of +2.0‰. Using boron isotopic compositions and different geochemical indices allowed us to clearly identify and distinguish the two major sources of contamination, agricultural activity and urban wastewater. Both of the two sources are characterized by high boron concentrations but their boron isotopic compositions significantly differ.  相似文献   

5.
18O values can provide significant δ15N and δ information to understand variation of nitrate sources of groundwater. Groundwater samples were collected during summer and winter in the karstic city, 18O-NO3-·δ15N-NO3- at Guiyang, southwest China and an…  相似文献   

6.
The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainsteam and 13 hydrological monitoring stations in the major tributaries during 2003 to 2007. The water samples show a large variation in both δD( 30‰ to 112‰) and δ18O( 3.8‰ to 15.4‰) values. Both δD and δ18O values show a decrease from the river head to the Jinsha Jiang section and then increase downstream to the river mouth. It is found that the oxygen and hydrogen isotopic compositions of the Yangtze water are controlled by meteoric precipitation, evaporation, ice(and snow) melting and dam building. The Yangtze SPM concentrations show a large variation and are well corresponded to the spatial and temporal changes of flow speed, runoff and SPM supply, which are affected by the slope of the river bed, local precipitation rate, weathering intensity, erosion condition and anthropogenic activity. The Yangtze SPM consists of clay minerals, clastic silicate and carbonate minerals, heavy minerals, iron hydroxide and organic compounds. From the upper to lower reaches, the clay and clastic silicate components in SPM increase gradually, but the carbonate components decrease gradually, which may reflect changes of climate and weathering intensity in the drainage area. Compared to those of the upper crust rocks, the Yangtze SPM has lower contents of SiO2, CaO, K2 O and Na2 O and higher contents of TFe2 O3 and trace metals of Co, Ni, Cu, Zn, Pb and Cd. The ΣREE in the Yangtze SPM is also slightly higher than that of the upper crust. From the upper to lower reaches, the CaO and MgO contents in SPM decrease gradually, but the SiO2 content increases gradually, corresponding to the increase of clay minerals and decrease of the carbonates. The δ30SiSPM values( 1.1‰ to 0.3‰) of the Yangtze SPM are similar to those of the average shale, but lower than those of the granite rocks( 0.3‰ to 0.3‰), reflecting the effect of silicon isotope fractionation in silicate weathering process. The δ30SiSPM values of the Yangtze SPM show a decreasing trend from the upper to the middle and lower reaches, responding to the variation of the clay content. The major anions of the river water are HCO 3, SO 4 2, Cl, NO 3, SiO 4 4 and F and the major cations include Ca2+, Na+, Mg2+, K+ and Sr2+. The good correlation between HCO3-content and the content of Ca2+may suggest that carbonate dissolution is the dominate contributor to the total dissolved solid(TDS) of the Yangtze River. Very good correlations are also found among contents of Cl, SO4 2, Na+, Mg2+, K+and Sr2+, indicating the important contribution of evaporite dissolution to the TDS of the Yangtze River. High TDS contents are generally found in the head water, reflecting a strong effect of evaporation in the Qinghai-Tibet Plateau. A small increase of the TDS is generally observed in the river mouth, indicating the influence of tidal intrusion. The F and NO3 contents show a clear increase trend from the upstream to downstream, reflecting the contribution of pesticides and fertilizers in the Chuan Jiang section and the middle and lower reaches. The DSi shows a decrease trend from the upstream to downstream, reflecting the effect of rice and grass growth along the Chuan Jiang section and the middle and lower reaches. The dissolved Cu, Zn and Cd in the Yangtze water are all higher than those in world large rivers, reflecting the effect of intensive mining activity along the Yangtze drainage area. The Yangtze water generally shows similar REE distribution pattern to the global shale. The δ30SiDiss values of the dissolved silicon vary from 0.5‰ to 3.7‰, which is the highest among those of the rivers studied. The δ30SiDiss values of the water in the Yangtze mainsteam show an increase trend from the upper stream to downstream. Its DSi and δ30SiDiss are influenced by multiple processes, such as weathering process, phytolith growth in plants, evaporation, phytolith dissolution, growth of fresh water diatom, adsorption and desorption of aqueous monosilicic acid on iron oxide, precipitation of silcretes and formation of clays coatings in aquifers, and human activity. The δ34SSO4 values of the Yangtze water range from 1.7‰ to 9.0‰. The SO4 in the Yangtze water are mainly from the SO4 in meteoric water, the dissolved sulfate from evaporite, and oxidation of sulfide in rocks, coal and ore deposits. The sulfate reduction and precipitation process can also affect the sulfur isotope composition of the Yangtze water. The87Sr/86Sr ratios of the Yangtze water range from 0.70823 to 0.71590, with an average value of 0.71084. The87Sr/86Sr ratio and Sr concentration are primary controlled by mixing of various sources with different87Sr/86Sr ratios and Sr contents, including the limestone, evaporite and the silicate rocks. The atmospheric precipitation and anthropogenic inputs can also contribute some Sr to the river. The δ11B values of the dissolved B in the Yangtze water range from 2.0‰ to 18.3‰, which is affected by multifactors, such as silicate weathering, carbonate weathering, evaporite dissolution, atmospheric deposition, and anthropogenic inputs.  相似文献   

7.
The isotopic composition of dissolved boron, in combination with the elemental concentrations of B, Cl and salinities in freshwater-seawater mixed samples taken from the estuary of the Changjiang River, the largest one in China, was investigated in detail in this study. Brackish water and seawater samples from the estuary of the Changjiang River were collected during low water season in November, 1998. Boron isotopic compositions were determined by the Cs2BO^+2-graphite technique with a analytical uncertainty of 0.2‰ for NIST SRM 951 and an average analytical uncertainty of 0.8‰ for the samples. The isotopic compositions of boron, expressed in δ^11B, and boron concentrations in the Changjiang River at Nanjing and seawater from the open marine East Sea, China, are characterized by δ^11B values of -5.4‰ and 40.0‰, as well as 0.0272 and 4.43 mg B/L, respectively. Well-defined correlations between δ^11B values, B concentrations and Cl concentrations are interpreted in terms of binary mixing between fiver input water and East Sea seawater by a process of straightforward dilution. The offsets of δ^11B values are not related to the contents of clastic sediment and to the addition of boron. These relationships favor a conservative behavior of boron at the estuarine of the Changjiang River.  相似文献   

8.
《中国地球化学学报》2006,25(B08):270-271
Rock weathering by carbonic acid is one of the important atmosphere CO2 sequestration. Actually, it depends on whether carbonic acid or other acids as weathering agents, which is important to understand the model of global carbon cycle. For example, sulfuric acid derived from oxidation of pyrite takes part in the rock weathering, which might counteract one part of CO2 drawdown by silicate weathering. In this study, chemicals and carbon isotopic composition of waters were determined in the Beipan River, Guizhou. The δ^13C values of dissolved inorganic carbon in the province, Southwest China. The values of the samples range from -13.1‰ to -2.4‰, which show a good negative correlation with the equivalent ratio of [HCO3]/([Ca^2++Mg^2+]) and a good positive correlation with the equivalent ratio of [SO4^2-]/([Ca^2++Mg^2+]) and [SO4^2-]/[HCO3^-]. The relationships suggest that sulfuric acid took part in carbonate weathering. Acid rain is thus a significant source of sulfuric acid to the karstic rivers of Guizhou Province.  相似文献   

9.
The present study investigates the hydrogeochemical characteristics of groundwater quality in Agas- theeswaram taluk of Kanyakumari district, Tamil Nadu, India. A total of 69 groundwater samples were collected during pre- and post-monsoon periods of 2011-2012. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, HCO3, Cl, SO42-, Ca2+, Mg2+, Na+ and K+ for both the seasons. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose. Dominant cations for both the seasons are in the order of Na+〉 Ca2+〉 Mg2+ 〉 K+ while the dominant anions for post monsoon and pre monsoon have the trends of CI 〉 HCO3 〉 SO42- and HCO3- 〉 CI 〉 SO42-, respectively. Analytical results observed from various indices reveal that the groundwater quality is fairly good in some places. Analytical results of few samples show that they are severely polluted and incidentally found to be near the coasts, estuaries and salt pans in the study area. The Gibbs plot indicates that the majority of groundwater samples fall in rock dominant region, which indicates rock water interaction in the study area. The United States salinity (USSL) diagram shows that the groundwater is free from sodium hazards but the salinity hazard varies from low to very high throughout the study area. This reveals that the groundwater is moderately suitable for agricultural activities. The observed chemical variations in pre-monsoon and post-monsoon seasons may be the effect to rock-water interactions, ion-exchange reactions, and runoff of fertilizers from the surrounding agricultural lands.  相似文献   

10.
The decline of the water quality in fast developing Asian megacities has become a matter of public concern. We analyzed a number of tap and river water samples collected in Beijing urban area on selected inorganic pollutants, such as specific anions(Cl-, NO-3, SO2-4, F-), heavy metals,and trace elements(Al, As, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, V, Zn). 27% of the analyzed tap water samples show one or more constituents above the national guideline limits. 9% of the samples reveal concentrations above the official threshold value for NO-3, while 5% exceed the standard value for As, which makes this tap water unsuitable for daily consumption due to the serious health risk, especially for children and babies. Multiple stable isotopes(δ15N1nitrate, δ8Onitrate, δ34Ssulfate, δ18Osulfate, Δ33Ssulfate) of tap water indicate urban sewage as the major origin of anthropogenic pollutants probably released in large amount by pipe wastewater leaking to the local groundwater. Substantial pollution by urban sewage and industrial emissions could be also detected in Beijing rivers. 13% of the river water samples in the wet season(summer) and 30% in the dry season(winter) show class IV quality, whereas 8% of the summer samples and 21% of the winter samples do not even comply with the lowest category class V. The latter river water can be regarded as toxic waste, which is hazardous for human health and highly destructive for the water ecology in the respective rivers. Both drinking and river water are most affected by urban pollution in the highly industrialized areas of Beijing. The results of this combined geochemical and multiple stable isotope study point to a critical status of the local rivers and aquifers, caused by the rapid growth of Beijing accompanied by an irresponsible handling of urban effluents.  相似文献   

11.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are impacted by both natural environment and people. Therefore, the study of hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. In this paper, thirty?five representative karst groundwater samples were collected from different aquifers (limestone and dolomite) and various land use types in Chongqing to trace the sources of solutes and relative hydrochemical processes. Hydrogeochemical types of karst groundwater in Chongqing were mainly of the Ca?HCO3 type or Ca (Mg)?HCO3 type. However, some hydrochemical types of karst groundwater were the K+Na+Ca?SO4 type (G25 site) or Ca?HCO3+SO4 type (G26 and G14 site), indicating that the hydrochemistry of these sites might be strongly influenced by anthropogenic activities or unique geological characteristics. The dissolved Sr concentrations of the studied groundwater ranged from 0.57 to 15.06 μmmol/L, and the 87Sr/86Sr varied from 0.70751 to 0.71627. The δ34S?SO42? fell into a range of ?6.8‰?21.5‰, with a mean value of 5.6‰. The variations of both 87Sr/86Sr and Sr values of the groundwater samples indicated that the Sr element was controlled by the weathering of limestone, dolomite and silicate rock. However, the figure of 87Sr/86Sr vs. Sr2+/[K++Na+] showed that the anthropogenic inputs also obviously contributed to the Sr contents. For tracing the detailed anthropogenic effects, we traced the sources of solutes collected karst groundwater samples in Chongqing according to the δ34S value of potential sulfate sources. The variations of both δ34S and 1/SO42? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sul?de mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) have contributed to solutes in karst groundwater. The influence of oxidation of sul?de mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread.  相似文献   

12.
Analyses of fluid-inclusion leachates from ore deposits show that Na/Br ratios are within the range of 75 - 358 and Cl/Br 67 - 394, respectively, and this variation trend coincides with the seawater evaporation trajectory on the basis of the Na/Br and Cl/Br ratios. The average Cl/Br and Na/Br ratios of mineralizing fluids are 185 and 173 respectively, which are very close to the ratios ( 120 and 233 ) of the residual evaporated seawater past the point of halite precipitation. It is suggested that the original mineralizing brine was derived from highly evapo-rated seawater with a high salinity. However, the inclusion fluids have absolute Na values of 69.9—2606.2 mmol kg^-1 and Cl values of 106.7 — 1995.5 mmol kg^-1. Most of the values are much less than those of seawater: Na, 485 mmol kg^-1 and Cl, 566 mmol kg^-1 , respectively; the salinity measured from fluid inclusions of the deposits ranges from 2.47 wt% to 15.78 wt% NaCl equiv. The mineralizing brine has been diluted. The δ ^18O and δD values of ore-forming fluids vary from -8.21‰ to 9.51‰ and from -40.3‰ to -94.3‰, respectively. The δD values of meteoric water in this region varied from - 80‰ to - 100‰ during the Jurassic. This evidenced that the ore-forming fluids are the mixture of seawater and meteoric water. Highly evaporated seawater was responsible for leaching and extracting Pb, Zn and Fe, and mixed with and diluted by descending meteoric water, which resulted in the formation of ores.  相似文献   

13.
Geochemical cycling has received wide attention due to the need to understand the pathways of pollutants through our present environment. In this regard the Yangtze River plays a significant role in putting those pollutants into the East China SeafWorld Oceans. The Yangtze River is of high sedimentation rate and water discharge. The watershed covers variable climate regions from temperate to subtropical and from semiarid to humid. Twenty three (23) sampling locations at the estuary have been selected for understanding the dynamic relationships. The elements (Cl^-, SO4^2-, Na^+, K^+, and Ca^2+) show conservative behavior during mixing of fresh water with saline water whereas Mg^2+, Mn^2+ show a non-conservative pattern . The relationships between Na^+/SO4^2- and Cl^-/SO4^2- molar ratios show a mixing of more than two water sources.  相似文献   

14.
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation.Oxygen and hydrogen isotopes, with and gradually decrease in summer and fall,illustrating that the seasonal effect is considerable.They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious.and the isotope in the middle portion iS normally depleted.The isotope compositions of 32 samples collected from shallow groundwater(less than a depth of 150 m)in desert plateau range from for JD.Most of them are identical with modern precipitation.The isotope compositions of 22 middle and deep groundwaters(greater than a depth of 275 m)fall in ranges from-11.6‰to-8.8‰with an average of-10.2‰ for £18O and from-89‰ to-63‰ with an average of-76‰ for £D.The average values are significantly less than those of modern precipitation,illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures.Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene.The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend,with a relatively flat slope of 3.77,and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.  相似文献   

15.
Granite with extremely low permeability has been selected to host a repository of spent nuclear fuel in the Czech Republic. Three boreholes were drilled in a test site of the Podlesi granite stock in the Krusne hory Mts. The holes were located 10 m apart. After hydraulic tests, four sections in one of the boreholes were separated by packers at depth of 69-111, 111-161, 161-220 and 220-300 m. Samples of groundwater from each section were periodically collected for chemical and isotopic analysis. Groundwater from fractures in the granite stock does not belong to a single and uniform groundwater body in spite of that the granite is chemically and mineralogically homogeneous. There are three water bodies, which are only partly hydraulically connected. They are: (1) The groundwater in the oxidation zone to a depth of about 111 m. (2) The groundwater of the zone of hydrolysis of alumosilicates from 111 to 220 m. (3) The groundwater of the zone of hydrolysis of alumosilicates below the depth of 220 m from a different fracture system than the water from the above sections. The total dissolved solids of water increase with depth. The Ca-SO4 component predominates in the near surface water body while Na-HCO3 component predominates in the two deeper water bodies. Water from the oxidation zone contains higher concentrations of iron and other trace metals. The chemical composition of water in the three water bodies changed during the 14 months of sampling. No steady state was reached during this time. The changes displayed systematic trends. The ratio Ca/Na increased and the ratio HCO3/SO4 decreased with time in the shallow water body. In contrast, the ratio CafNa decreased and HCO3/SO4 fluctuated without an obvious trend in the deeper water bodies. An unusually high concentration of dissolved organic carbon (DOC) was found in the lowest section of the test borehole. The concentration of DOC was 150 mg/L at the beginning of sampling. The isotopic composition was δ^13C=-27.6 ‰. The concentration of DOC dropped both towards the surface and with time.  相似文献   

16.
In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ^18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The ^87Sr/^86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ^11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ^11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.  相似文献   

17.
The Lanping?Simao Basin is located on the southeastern Tibetan Plateau, China, and contains massive evaporites. The origin of evaporites in the basin has been hotly debated because of the strong transformation by tectonic movement. Forty halite samples from borehole MK-3 in the Mengyejing area of the basin were collected and analyzed using XRD, Cl-Sr isotopes and chemical compositions to trace the origin of the evaporites in the basin. The Br × 103/Cl ratios of the halite samples are between 0 and 0.55, most of which are synchronized with the law of seawater evaporation and at the stage of halite precipitation from seawater, indicating that the evaporites are mainly of marine origin. The 87Sr/86Sr ratios range from 0.707489 to 0.711279; after correction, the 87Sr/86Sr 145 Ma ratios range from 0.704721 to 0.707611, equivalent with the 87Sr/86Sr ratios of seawater at 145 Ma, indicating a marine origin. The decay of 87Rb in the evaporite during deposition, change of the depositional environment and the unsealed environment at a later period resulted in the present 87Sr/86Sr ratios of some samples being high. The δ37Cl value compositions range from ?0.38‰ to 0.83‰, which is consistent with the δ37Cl value composition of the world marine halite (?0.6‰ to 0.4‰), further confirming that seawater is the main origin. In addition, the high δ37Cl value of some samples at the boundary of the upper and lower evaporite layers might be related to the influence of δ37Cl-rich brine and the incomplete dissolution of the halite.  相似文献   

18.
Base on the groundwater yield, water temperature and hydrochemistry change of the groundwater, we can analyze that the summer water content is obviously greater than winter water content where the in and-out wall rock of the Daban Mountain tunnel. The groundwater supply has the extensity and the seasonality. The groundwater content of the middle tunnel wall rock changes relatively steady, mainly supply through horizontal direction. And the total groundwater content is relatively little and steady in winter. The water pressure of the wall rock cranny is little. It has the fluent drainage system to dredge groundwater, which cannot constitute a threat to the tunnel lining. And the cold-proof sluice hole can normally work to drain water.  相似文献   

19.
The impact of air pollution is a substantial European and global problem which has been observed even in the most remote areas of our planet. Not only surface water, but also groundwater resources are partly endangered by dry and wet deposition from the air. Karst and other sensitive aquifers contribute up to 90 % to the total drinking water supply in some European regions. However, they are more vulnerable to contamination than other aquifers due to short transfer times from recharge to source. Therefore, the main objective of this paper is to show possibilities to quantify the impact of air pollution on sensitive water resources (e.g. karst), to develop an innovative surveillance tool based on isotopes and meteorological considerations. Comparisons of lead isotope measurements in precipitation, spring waters, soil profiles and dolomite bedrock in a relatively pristine and remote area at the front-range of the Northern Calcareous Alps in Austria with literature data indicate that radiogenic Australian gasoline-lead still dominates with 60%-80% the composition of the trace lead in the spring waters. In addition to the lead leached from the dolomite bedrock a third source contributes about 5%-10%. This second long distance Pb-contribution may originate from coal burning and/or Ag-Pb-ore smelting in central Europe in the past. The monthly precipitation (May and September 2005) samples show ^18O-rich sulphate ions, whereas the soil sulphates change in the direction to lower ^18O- and higher ^34S values with depth. The spring waters and bedrock dolomites show relatively low delta ^34S values (4‰-9 ‰). Assuming the precipitation samples and the dolomite bed rocks are end-members the contribution of atmospheric sulphate can estimated to be 20% in the spring waters and between 10% to 45% in the soil samples. The ^87Sr/^86Sr-isotope results in the precipitation (0.7092) support at least a more radiogeradiogenic, far transported source in addition to a possible recycling of local dolomite and limestone (0.7080-0.7083) dust.  相似文献   

20.
As nitrate pollution in groundwater has become increasingly serious in recent years, nitrogen isotope was adopted in this paper to define its sources in a typical agricultural area of Dong'e hydrogeological unit. The results show that: Higher content of NO_3~- detected in shallow groundwater is 27.77 mg/L on average and δ15 N content ranges from 7.8‰ to 12 ‰, indicating that shallow groundwater is mainly contaminated by sewage or feces. In contrast, less NO_3~- in deep groundwater(karst water) has an average value of 12.81 mg/L and δ15 N content is between 7.2‰ and 14.3‰, which is closely related to human disturbance as mentioned above. In addition, considering relatively low groundwater quality at some monitoring sites, reasonable fertilization is a better choice in the study area to reduce nitrate source in groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号