首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic signals transmitted from the ATOC source on Pioneer Seamount off the coast of California have been received at various sites around the Pacific Basin since January 1996. We describe data obtained using bottom-mounted receivers, including US Navy Sound Surveillance System arrays, at ranges up to 5 Mm from the Pioneer Seamount source. Stable identifiable ray arrivals are observed in several cases, but some receiving arrays are not well suited to detecting the direct ray arrivals. At 5-Mm range, travel-time variations at tidal frequencies (about 50 ms peak to peak) agree well with predicted values, providing verification of the acoustic measurements as well as the tidal model. On the longest and northernmost acoustic paths, the time series of resolved ray travel times show an annual cycle peak-to-peak variation of about 1 s and other fluctuations caused by natural oceanic variability. An annual cycle is not evident in travel times from shorter acoustic paths in the eastern Pacific, though only one realization of the annual cycle is available. The low-pass-filtered travel times are estimated to an accuracy of about 10 ms. This travel-time uncertainty corresponds to errors in range- and depth-averaged temperature of only a few millidegrees, while the annual peak-to-peak variation in temperature averaged horizontally over the acoustic path and vertically over the upper 1 km of ocean is up to 0.5°C  相似文献   

2.
This paper provides an overview of the experimental goals and methods of the Long-range Ocean Acoustic Propagation EXperiment (LOAPEX), which took place in the northeast Pacific Ocean between September 10, 2004 and October 10, 2004. This experiment was designed to address a number of unresolved issues in long-range, deep-water acoustic propagation including the effect of ocean fluctuations such as internal waves on acoustic signal coherence, and the scattering of low-frequency sound, in particular, scattering into the deep acoustic shadow zone. Broadband acoustic transmissions centered near 75 Hz were made from various depths to a pair of vertical hydrophone arrays covering 3500 m of the water column, and to several bottom-mounted horizontal line arrays distributed throughout the northeast Pacific Ocean Basin. Path lengths varied from 50 km to several megameters. Beamformed receptions on the horizontal arrays contained 10–20-ms tidal signals, in agreement with a tidal model. Fifteen consecutive receptions on one of the vertical line arrays with a source range of 3200 km showed the potential for incoherent averaging. Finally, shadow zone receptions were observed on an ocean bottom seismometer at a depth of 5000 m from a source at 3200–250-km range.   相似文献   

3.
A bottom-mounted sonar operating at 40 kHz has been used to measure the variation of bottom acoustic scattering over extended time intervals at two shallow sites as part of the Coastal Benthic Boundary Layer Special Research Project. The acoustic data were analyzed using a correlation method that measures the spatial and temporal dependence of benthic change. The rate of decorrelation was two orders of magnitude more rapid at a sandy site near Panama City, Florida, USA, than at a silty site in Eckernförde Bay, Germany, and both sites were characterized by hot spots or localized regions of activity.  相似文献   

4.
A new broadband acoustic Doppler current profiler (ADCP) is described, with a useful range comparable to that of a commercially available narrowband (incoherent) system of the same acoustic frequency, but having enhanced performance. The extra performance may be traded off among (1) reduced velocity variance, (2) reduced averaging time, and (3) finer depth resolution. This improvement permits the observation of phenomena with smaller time and space scales than is now possible with available ADCPs. An expression predicting r.m.s. velocity error in terms of system parameters and the measured acoustic data is given and is shown to be consistent with the independently measured velocity error among redundant beams. Two major sources of bias error in incoherent ADCPs are shown to be much reduced for the broadband system. Field data demonstrating the improved performance over the existing incoherent ADCP are shown for cases of both strong and weak shear  相似文献   

5.
On 21 March 1960, sounds from three 300-lb depth charges deployed at 5.5-min intervals off Perth, Australia were recorded by the SOFAR station at Bermuda. The recorded travel time of these signals, about 13,375 s, is a historical measure of the ocean temperature averaged across several ocean basins. The 1960 travel time measurement has about 3-s precision. High-resolution global ocean state estimates for 2004 from the “Estimating the Circulation and Climate of the Ocean, Phase II” (ECCO2) project were combined with ray tracing to determine the paths followed by the acoustic signals. The acoustic paths are refracted geodesics that are slightly deflected by either small-scale topographic features in the Southern Ocean or the coast of Brazil. The refractive influences of intense, small-scale oceanographic features, such as Agulhas Rings or eddies in the Antarctic Circumpolar Current, greatly reduce the necessary topographic deflection and cause the acoustic paths to meander in time. The ECCO2 ocean state estimates, which are constrained by model dynamics and available data, were used to compute present-day travel times. Measured and computed arrival coda were in good agreement. Based on recent estimates of warming of the upper ocean, the travel-time change over the past half-century was nominally expected to be about −9 s, but little difference between measured (1960) and computed (2004) travel times was found. Taking into account uncertainties in the 1960 measurements, the 2004 ocean state estimates, and other approximations, the ocean temperature averaged along the sound channel axis over the antipodal paths has warmed at a rate less than about 4.6 m °C yr−1 (95% confidence). At this time, the estimated uncertainties are comparable in size to the expected warming signal, however.  相似文献   

6.
A basin-scale acoustic tomography simulation is carried out for the northeast Pacific Ocean to determine the accuracy with which time must be kept at the sources when clocks at the receivers are accurate. A sequential Kalman filter is used to estimate sound-speed fluctuations and clock errors. Sound-speed fluctuations in the simulated ocean are estimated from an eddy-resolving hydrodynamic model of the Pacific forced by realistic wind fields at daily resolution from 1981-1993. The model output resembles features associated with El Nino and the Southern Oscillation, as well as many other features of the ocean's circulation. Using a Rossby-wave resolving acoustic array of four fixed sources and twenty drifting receivers, the authors find that the percentage of the modeled ocean's sound-speed variance accounted for with tomography is 92% at 400-km resolution, regardless of the accuracy of the clocks. Clocks which drift up to hundreds of seconds of error or more for a year do not degrade tomographic images of the model ocean. Tomographic reconstructions of the sound-speed field are insensitive to clock error primarily because of the wide variety of distances between the receivers from each source. Every receiver “sees” the same clock error from each source, regardless of section length, but the sound-speed fluctuations in the modeled ocean cannot yield travel times which lead to systematic changes in travel time that are independent of section length. The Kalman filter is thus able to map the sound-speed field accurately in the presence of large errors at the source's clocks  相似文献   

7.
Oceanic variabilities off Mindanao Island, Philippines where the North Equatorial Current branches into the Kuroshio and the Mindanao Current were measurerd for a period from 14 Feb.–1 Jun. 1992 by the oceean acoustic tomography (OAT). From the beginning of April, the travel time of acoustic rays propagating over a horizontal distance of about 250km, through the depth range of 80–4700 m around the underwater sound channel began to decrease, implying a warming of water. This variability was also confirmed with the results of temperature measurement at the sites where a sound source and receiver were located. The TOGA/TAO array data show that the OAT experiment was done when the 1991–1992 El Nino was at a decaying stage and the resulting warming-up of water occurred at the western Pacific. This study provides us a first evidence of ENSO-related variabilities detected by the OAT.  相似文献   

8.
An acoustic tomography simulation is carried out in the eastern North Pacific ocean to assess whether climate trends are better detected and mapped with mobile or fixed receivers. In both cases, acoustic signals from two stationary sources are transmitted to ten receivers. Natural variability of the sound-speed field is simulated with the Naval Research Laboratory (NRL) layered-ocean model. A sequential Kalman-Bucy filter is used to estimate the sound speed field, where the a priori error covariance matrix of the parameters is estimated from the NRL model. A spatially homogeneous climate trend is added to the NRL fluctuations of sound speed, but the trend is not parameterized in the Kalman filter. Acoustic travel times are computed between the sources and receivers by combining sound speeds from the NRL model with those from the unparameterized climate trend. The effects of the unparameterized climate trend are projected onto parameters which eventually drift beyond acceptable limits. At that time, the unparameterized trend is detected. Mobile and fixed receivers detect the trend at about the same time. At detection time, however, maps from fixed receivers are less accurate because some of the unparameterized climate trend is projected onto tile spatially varying harmonics of the sound-speed field. With mobile receivers, the synthetic apertures suppress the projection onto these harmonics. Instead, the unparametrized trend is correctly projected onto the spatially homogeneous portion of the parameterized sound-speed field  相似文献   

9.
Acoustic monitoring and aerial visual surveys of marine mammal activity were conducted simultaneously at the Navy's Pacific Missile Range Facility near Kauai, HI, during times of both high- and low-whale density from February 2002 to March 2003. Specifically, recordings from the range's 24 broadband hydrophones were made during 11 of 16 "in-season" and during six of ten "off-season" aerial surveys. Basic acoustic detections consisted primarily of humpback whale calls and sperm-whale clicks, and those two species were also reported in the visual surveys. The relative number of acoustic detections roughly corresponded with the visual survey results throughout the year. The same acoustic data were also provided to a passive-acoustic-localization algorithm based on acoustic propagation models which generated estimates of sperm-whale movement through the range. The acoustic localizations are in close proximity in space and time to the visual observations of sperm whales. Verification of the model-based localization algorithm's accuracy was demonstrated in a controlled-source experiment at the Navy's Atlantic Undersea Test and Evaluation Center (AUTEC) range in the Bahamas where the recordings of sperm-whale clicks were broadcast and successfully tracked. The localization accuracy of the model-based technique and traditional hyperbolic techniques is compared. These results raise the possibility of using existing Navy assets to detect and track marine mammals, particularly during times when visual sighting conditions are not favorable, in efforts to minimize their exposure to underwater sound.  相似文献   

10.
In this paper, the lines of investigation on a problem of the development of remote acoustic sensing methods in oceanology are formulated. This paper summarizes the results of investigations into the possibilities for monitoring temperature and flow fields in shallow seas. In the discussed experiments, the instrumentation being constituents of the complex for longduration remote monitoring of marine medium climatic variability and that of the acoustic tomography of shallow sea dynamic processes is used. The acoustic instruments were located on the POI FEB RAS acousto-hydrophy sical polygon (Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy o f Sciences) near the Gamov Peninsula. Acoustic receiving and transmitting systems operating with multiplex phase-manipulated signals (of M-codes) at frequency range 250-2500 Hz form the basis for this complex.  相似文献   

11.
Propagation of 400-Hz sound through continental-shelf internal solitary wave packets is shown by numerical simulation to be strongly influenced by coupling of normal modes. Coupling in a packet is controlled by the mode coefficients at the point where sound enters the packet, the dimensions of the waves and packet, and the ambient depth structures of temperature and salinity. In the case of a moving packet, changes of phases of the incident modes with respect to each other dominate over the other factors, altering the coupling over time and thus inducing signal fluctuations. The phasing within a moving packet varies with time scales of minutes, causing coupling and signal fluctuations with comparable time scales. The directionality of energy flux between high-order acoustic modes and (less attenuated) low-order modes determines a gain factor for long-range propagation. A significant finding is that energy flux toward low-order modes through the effect of a packet near a source favoring high-order modes will give net amplification at distant ranges. Conversely, a packet far from a source sends energy into otherwise quiet higher modes. The intermittency of the coupling and of high-mode attenuation via bottom interaction means that signal energy fluctuations and modal diversity fluctuations at a distant receiver are complementary, with energy fluctuations suggesting a source-region packet and mode fluctuations suggesting a receiver-region packet. Simulations entailing 33-km propagation are used in the analyses, imitating the SWARM experiment geometry, allowing comparison with observations  相似文献   

12.
Interdecadal variations of El Niño/Southern Oscillation (ENSO) signals and annual cycles appearing in the sea surface temperature (SST) and zonal wind in the equatorial Pacific during 1950–1997 are studied by wavelet, empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses. The typical timescale of ENSO is estimated to be about 40 months before the late 1970s and 48–52 months after that; the timescale increased by about 10 months. The spatial pattern of the ENSO signal appearing in SST also changed in the 1970s; before that, the area of strong signal spread over the extratropical regions, while it is confined near the equator after that. The center of the strongest signal shifted from the central and eastern equatorial Pacific to the South American coast at that time. These SST fluctuations near the equator are associated with fluctuations of zonal wiond, whose spatial pattern also shifted considerably eastward at that time. In the eastern equatorial Pacific, amplitudes of annual cycles of SST are weak in El Niño years and strong in La Niña years. This relation is not clear, however, in the 1980s and 1990s.  相似文献   

13.
In eddy-resolving hydrodynamic models, first-mode baroclinic Rossby waves linked to El Nino/Southern Oscillation are the dominant features which change basin-wide temperatures below the seasonal thermocline in the northeast Pacific at periods less than a decade. Simulations are carried out in which Rossby waves are mapped using acoustic tomography. Based on the model which propagated these waves, a Kalman filter is used to map temperature signals for a year. The modeled data are taken from a dense network of acoustic tomography sections. At 300-m depth, where the temperature perturbations associated with Rossby waves are about ±1°C, 80% to 90% of the model variance is accounted for with tomographic estimates. The corresponding standard deviations of the estimates are less than 0.1°C at 400-km resolution. About 80% of the model variance is accounted for with tomography when the navigational errors of the sources and receivers are as poor as one kilometer. Consequently, it may be unnecessary to accurately navigate actual tomographic instruments to map climate change. Modeling results are insensitive to: 1) a reduction in data due to a significant number of instruments which fail; 2) whether the instruments are mobile or fixed; 3) the detailed trajectories of mobile receivers; 4) the shape of the a priori spectrum of ocean fluctuations; 5) the corrections to the acoustic travel-time biases; and 6) the errors in the sound-speed algorithm. In basin-scale arrays, the modeled variance of acoustic travel time depends on the horizontal wavenumber of temperature as k-5.5. Because sound has little sensitivity to small wavelengths, modeled Rossby waves can be mapped in a day from a few sources and of order ten receivers. The results only depend on the model having large scales in space and time  相似文献   

14.
In acoustic tomographic system capable of performing in situ two-dimensional (2D) acoustic imaging of shallow water sediments is described. This system is capable of resolving inhomogeneities greater than 10 cm and differentiating sound-speed variations greater than 2%, A tomographic inversion is performed in a 2D vertical slice of about 1 m 2 (1 m×1 m) using three identical probes, with each consisting of 70 evenly distributed transducers. In normal deployments, two of the probes are oriented vertically and are separated by about 1 meter, and the third is positioned horizontally right above the two vertical probes. The additional horizontal probe greatly improves the horizontal resolution of the system compared to conventional crosshole tomographic setups. Numerical simulations are performed to evaluate the influences of arrival time detection error and transducer position error on the performance of the tomography system. For an arrival time of 500 ns (standard deviation) and a position error of 4 mm (standard deviation), sound-speed anomalies of greater than 0.8% can be correctly predicted near the upper portion (close to the horizontal probe) and are resolvable near the lower portion. A controlled laboratory experiment was conducted to evaluate the performance of the system. The location of a polyurethane block (Conap EN22) used as a known target is correctly predicted while the inverted sound speed is about 9% lower than that from its actual value. Field data taken from a saturated muddy site are presented and analyzed. The inverted mean sound speed and attenuation are about 1480 ms-1 and 20 dBm-1, respectively  相似文献   

15.
海洋声层析观测技术和方法   总被引:2,自引:0,他引:2       下载免费PDF全文
叙述海洋声层析观测系统,以声线传播时间层析为重点概括了海洋声层析的基本原理和其他主要方法,共6个方法。对运用海洋声层析观测来反演海洋状态问题的建立、求解及其误差来源作了分析和讨论。以测量声线传播时间为例介绍了海洋声层析观测系统主要设计技术。  相似文献   

16.
Coastal acoustic tomography system and its field application   总被引:3,自引:0,他引:3  
The coastal acoustic tomography system (CATS), composed of five moored acoustic stations, has been constructed to measure current fields. The system is developed with special considerations in mind, including the use of Global Positioning System clock signals in the synchronization of the system clock timing among the multiple acoustic stations, and the use of the differently coded Gold sequences to identify the acoustic signals corresponding to individual stations from a received signal. The CATS was successfully applied to map the structure of strongly nonlinear tidal currents in the coastal sea. In spite of the limited spatial resolution caused by inadequate sound transmission data, the two-dimensional tidal vortices features of growth, translation, and decay processes are reconstructed through an inverse analysis of the acoustic travel time obtained among the station pairs. It is evident that the CATS is a powerful tool for measuring variable current fields generated in the coastal seas  相似文献   

17.
A high-resolution underwater acoustic pulse-Doppler navigation system has been developed and tested at sea. The system provides continuous, highly accurate tracking of underwater and ocean-surface platforms in a fixed 50-km2navigation net. Three reference buoys, moored 20 m from the ocean bottom, provide the navigation net used by shipboard processing equipment. Each reference buoy contains an acoustic transponder, used to obtain the acoustic travel times from the transponder to the platform, and a continuous-tone beacon, used to obtain the Doppler shift due to platform motion. The system is capable of determining the position of a platform with respect to the reference net with an error of 2-3 m. The relative position of the platform on a fix-to-fix basis can be determined within several centimeters over short time intervals (approx 10min).  相似文献   

18.
首先概述了坐底式海洋环境监测系统的发展历程、结构组成、工作原理和系统功能等。设计开发了一套浅海坐底式海洋环境监测系统,并在北黄海海域进行了长时间应用。对其结构组成特点、原理功能和实际应用情况等进行了详细阐述,并结合一段时间的监测数据,说明其可为海洋科学研究、海水养殖与海洋工程等提供基础数据。对坐底式海洋环境监测系统的布放与回收方法进行介绍,针对近海经常出现无释放器或释放器失灵的坐底式海洋环境监测系统,且潜水员或作业型水下机器人(ROV)不方便下潜系缆的情况,设计了一种实操性强的打捞回收方法。总结归纳了所设计的浅海坐底式海洋环境监测系统特点及回收方法,可为相关应用与研究提供参考借鉴。  相似文献   

19.
Measurements of the three-dimensional (3-D) structure of a sound-speed field in the ocean with the spatial and temporal resolution required for prediction of acoustic fields are extremely demanding in terms of experimental assets, and they are rarely available in practice. In this study, a simple analytic technique is developed within the ray approximation to quantify the uncertainty in acoustic travel time and propagation direction that results from an incomplete knowledge or purely statistical characterization of sound-speed variability in the horizontal plane. Variation of frequency of an acoustic wave emitted by a narrowband source due to a temporal variation of environmental parameters is considered for deterministic and random media. In a random medium with locally statistically homogeneous, time-dependent 3-D fluctuations of the sound speed, calculation of the signal frequency and bearing angle variances as well as the travel-time bias due to horizontal refraction is approximately reduced to integration of respective statistical parameters of the environmental fluctuations along a ray in a background, range-dependent, deterministic medium. The technique is applied to acoustic transmissions in a coastal ocean, where tidally generated nonlinear internal waves are the prevailing source of sound-speed fluctuations, and in a deep ocean, where the fluctuations are primarily due to spatially diffuse internal waves with the Garrett–Munk spectrum. The significance of 3-D and four-dimensional (4-D) acoustic effects in deep and shallow water is discussed.  相似文献   

20.
The results of geoacoustic studies carried out by the acoustic MAK-1M system in the southeastern Ita Mai Tai Guyot (Magellan Seamounts, Pacific Ocean) are discussed. The obtained geoacoustic sections characterize the incoherent part of the sedimentary sequence with high resolution. The geoacoustic stratification is well correlative with the deep-sea drilling data: the acoustic units are reliably correlated with the lithostratigraphic units defined in the cores of DSDP holes 200 and 202. Three geoacoustic units are distinguished in the sedimentary section (from the top downward): unit I corresponding in age to the terminal Miocene (Messinian)-Quaternary; unit II correlated with the Late Miocene (Tortonian); unit III accumulated in the Early Eocene-Early Miocene. The acoustic basement is composed of reefogenic limestones that were formed at different stages of the guyot’s development through the Aptian-Turonian to Late Paleocene-Eocene. The sonar images allow the distribution of the incoherent carbonate sediments to be contoured along the periphery of the summit’s plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号