首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Himalayan fold-and-thrust belt has propagated from its Tibetan hinterland to the southern foreland since ∼55 Ma. The Siwalik sediments (∼20 - 2 Ma) were deposited in the frontal Himalayan foreland basin and subsequently became part of the thrust belt since ∼ 12 Ma. Restoration of the deformed section of the Middle Siwalik sequence reveals that the sequence is ∼325 m thick. Sedimentary facies analysis of the Middle Siwalik rocks points to the deposition of the Middle Siwalik sediments in an alluvial fan setup that was affected by uplift and foreland-ward propagation of Greater and Lesser Himalayan thrusts. Soft-sediment deformation structures preserved in the Middle Siwalik sequence in the Darjiling Himalaya are interpreted to have formed by sediment liquefaction resulting from increased pore-water pressure probably due to strong seismic shaking. Soft-sediment structures such as convolute lamination, flame structures, and various kinds of deformed cross-stratification are thus recognized as palaeoseismic in origin. This is the first report of seismites from the Siwalik succession of Darjiling Himalaya which indicates just like other sectors of Siwalik foreland basin and the present-day Gangetic foreland basin that the Siwalik sediments of this sector responded to seismicity.  相似文献   

2.
Himalayan seismicity is related to continuing northward convergence of Indian plate against Eurasian plate. Earthquakes in this region are mainly caused due to release of elastic strain energy. The Himalayan region can be attributed to highly complex geodynamic process and therefore is best suited for multifractal seismicity analysis. Fractal analysis of earthquakes (mb ?? 3.5) occurred during 1973?C2008 led to the detection of a clustering pattern in the narrow time span. This clustering was identified in three windows of 50 events each having low spatial correlation fractal dimension (D C ) value 0.836, 0.946 and 0.285 which were mainly during the span of 1998 to 2005. This clustering may be considered as an indication of a highly stressed region. The Guttenberg Richter b-value was determined for the same subsets considered for the D C estimation. Based on the fractal clustering pattern of events, we conclude that the clustered events are indicative of a highly stressed region of weak zone from where the rupture propagation eventually may nucleate as a strong earthquake. Multifractal analysis gave some understanding of the heterogeneity of fractal structure of the seismicity and existence of complex interconnected structure of the Himalayan thrust systems. The present analysis indicates an impending strong earthquake, which might help in better hazard mitigation for the Kumaun Himalaya and its surrounding region.  相似文献   

3.
The continuous process of continent–continent collision between the Indian and the Eurasian plates has led to the formation of the Himalayan range and continuously caused earthquakes in the region. Large earthquakes with magnitudes of 8 and above occur in this region infrequently, releasing the elastic strain accumulated over years around the plate boundary. Geodetic measurements can help estimate the strain distribution along the fault system. These measurements provide information on active deformations and associated potential seismic hazards along the Himalayan arc. In order to understand the present deformation around the plate boundary, we collected GPS data during three campaigns in the years of 2005–2007 at 16 sites in the Kumaun region of the Lesser Himalaya. Horizontal velocity vectors estimated in ITRF2000 are found to be in the range of 41–50 mm/yr with an uncertainty level of the order of 1 mm/yr. The velocity field indicates that the present convergence of around 15 mm/yr takes place in the Kumaun Himalaya. Further, we estimate the strain components in the study area for understanding the currently active tectonic process in the region. The estimated dilatational strain indicates that the northern part near the Main Central Thrust (MCT) is more compressional than the southern part. Maximum shear strain is mostly accommodated in the northern part too. The maximum shear and dilatational strain rates are about 1.0 and 0.5 μstrain/yr. It is seen that the distribution of high shear strain spatially correlates with seismicity. The maximum of extensional and compressional strains due to the force acting along the Main Central Thrust (MCT) in the NW–SE direction are found to be 0.4 and 0.1 μstrain/yr, respectively. The maximum shear strain in the northern part of the Himalaya appears to be associated with the convergence of the region proposed by other geophysical studies.  相似文献   

4.
The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively.  相似文献   

5.
The Himalayan region has been studied extensively during the past few decades in terms of present ongoing deformations. Various models have been proposed for the evolution of the Himalaya to explain the cause of earthquake occurrences and to understand the seismotectonics of the Himalayan collision zone. However, the information on displacements from field geodetic surveys is still too scarce in time and spatial domains so as to provide convincing evidences. Moreover, classical Probabilistic Seismic Hazard Approaches also fail due to paucity of data in higher magnitude range, thus emphasizing the need of spatial level displacement measurements. It is in this context that the present study has been carried out to estimate the surface displacement in a seismically active region of the Himalaya between Ganga and Yamuna Tear using Differential SAR interferometry. Three single-look complex images, obtained from ASAR sensor onboard ENVISAT satellite, have been used. A displacement rate of 8?C10?mm per year in N15°E direction of Indian plate has been obtained in this three-pass SAR interferometry study. It has been noted that the estimated convergence rate using Differential SAR interferometry technique is relatively low in comparison with those obtained from previous classical studies. The reported low convergence rate may be due to occurrence of silent/quite earthquakes, aseismic slip, differential movement of Delhi Hardwar ridge, etc. Therefore, in view of the contemporary seismicity and conspicuous displacements, a study of long-term observations of this surface movement has been recommended in future through a time-series SAR interferometry analysis.  相似文献   

6.
N. Purnachandra  P.  T.  D.S.   《Gondwana Research》2006,9(4):365-378
The recent earthquake of 8 October 2005 in the Muzaffarabad region in western Himalaya destroyed several parts of Pakistan and the north Indian state of Jammu and Kashmir. The earthquake of magnitude 7.6 claimed more than 80,000 lives, clearly exposing the poor standards of building construction — a major challenge facing the highly populated, earthquake prone, third world nations today. In this paper, we examine variations in the stress field, seismicity patterns, seismic source character, tectonic setting, plate motion velocities, GPS results, and the geodynamic factors relating to the geometry of the underlying subsurface structure and its role in generation of very large earthquakes. Focal mechanism solutions of the Muzaffarabad earthquake and its aftershocks are found to have steep dip angles comparable to the Indian intra-plate shield earthquakes rather than the typical Himalayan earthquakes that are characterized by shallow angle northward dips. A low p-value of 0.9 is obtained for this earthquake from the decay pattern of 110 aftershocks, which is comparable to that of the 1993 Latur earthquake in the Indian shield — the deadliest Stable Continental Region (SCR) earthquake till date. Inversion of focal mechanisms of the Harvard CMT catalogue indicates distinct stress patterns in the Muzaffarabad region, seemingly governed by an overturned Himalayan thrust belt configuration that envelops this region, adjoined by the Pamir and Hindukush regions. Recent developments in application of seismological tools like the receiver function technique have enabled accurate mapping of the dipping trends of the Moho and Lithosphere–Asthenosphere Boundary (LAB) of Indian lithosphere beneath southern Tibet. These have significantly improved our understanding of the collision process, the mechanism of Himalayan orogeny and uplift of the Tibetan plateau, besides providing vital constraints on the seismic hazard threat posed by the Himalaya. New ideas have also emerged through GPS, macroseismic investigations, paleoseismology and numerical modeling approaches. While many researchers suggest that the Himalayan front is already overdue for several 8.0 magnitude earthquakes, some opine that most of the front may not really be capable of sustaining the stress accumulation required for generation of great earthquakes. We propose that the occurrence of great earthquakes like those of 1897 in Shillong and 1950 in Assam have a strong correlation with their proximity to multiple plate junctions conducive for enormous stress build up, like the eastern Himalayan syntaxis comprising the junction of the India, Eurasia plates, and the Burma, Sunda micro-plates.  相似文献   

7.
The Indian subcontinent is one of the most earthquake-prone regions of the world. The Himalayas are well known for high seismic activity, and the ongoing northwards drift of the Indian plate makes the Himalaya geodynamically active. During the last three decades, several major earthquakes occurred at the plate interiors and boundaries in this subcontinent causing massive losses. Therefore, one of the major challenges in seismology has been to estimate long recurrence period of large earthquakes where most of the classical Probabilistic Seismic Hazard Approaches fail due to short catalogues used in the prediction models. Therefore, during the past few decades, the Himalayan region has been studied extensively in terms of the present ongoing displacements. In this context the present study has been carried out to estimate the surface displacement in a seismically active region of the Himalaya, in between Ganga and Yamuna Tear, using multi-temporal Synthetic Aperture Radar (SAR) Interferometry. A displacement rate of 6.2–8.2 mm/yr in N14°E direction of the Indian plate towards the Tibetan plate has been obtained. It has been noted that the estimated convergence rate using Differential SAR Interferometry technique is relatively low in comparison with those obtained from previous classical studies. The reported low convergence rate may be due to the occurrence of silent/quite earthquakes, aseismic slip, differential movement of Delhi Hardwar ridge, etc. Therefore, in view of the contemporary seismicity and conspicuous displacements, a study of long-term observations of this surface movement has been recommended in future through a time-series SAR Interferometry analysis.  相似文献   

8.
Deformation in active mountain belts like the Himalaya is manifested over several spatial and temporal scales and collation of information across these scales is crucial to an integrated understanding of the overall deformation process in mountain belts. Computation and integration of geological shortening rates from retrodeformable balanced cross-sections and present-day convergent rates from deforming mountain belts is one way of integrating information across time-scales. The results from GPS measurements carried out in NE India indicate that about 15–20 mm/yr of convergence is being accommodated there. Balanced-cross sections from the NE Himalaya indicate about 350–500 km of shortening south of the South Tibet Detachment (STD). Geothermobarometry suggest that the rocks south of the STD deformed under peak metamorphic conditions at ∼ 22 Ma. This indicates a geological convergence rate of ∼ 16–22 mm/yr which appears to be fairly consistent with the GPS derived convergence rates. Approximately 1.5 to 3.5 mm/yr (∼ 10–20 %) of the total N-S of the present-day convergence in the NE Himalaya is accommodated in the Shillong Plateau. In addition, ∼ 8–9 mm/yr of E-W convergence is observed in the eastern and central parts of the Shillong Plateau relative to the Indo-Burman fold-thrust belt. Balanced cross-sections in the Indo-Burman wedge together with higher resolution GPS measurements are required in the future to build on the first-order results presented here.  相似文献   

9.
Recent work on long-period surface wave dispersion investigations and other geophysical work have shown that in the Himalayan and Tibet Plateau region the crust is extremely thick and the velocities are low: However, the upper mantle below Tibet appears to have normal velocities. Seismic Research Observatories, being established in the vicinity of Himalaya, will be extremely useful for near-source investigations due to their digital data acquisition capabilities and much larger dynamic range. Quantitative seismicity maps prepared for the Himalayan region are useful in comprehending regional tectonics. With international collaboration, Deep Seismic Sounding surveys have been successfully carried out in western Himalaya. It is inferred that the northern boundary of the Indian Plate does not lie along the Main Central Himalayan Thrust or the Indus Suture line, but falls very much north of the combined Indo-Tibetan block. Focal mechanism studies are, by and large, consistent with the northward thrusting of the Indian Plate. Conflicting results regarding the prevalence of isostasy in the Himalayan region have been obtained from gravity surveys. Geophysical investigations and observational facilities need to be intensified for a better understanding of the tectonics.  相似文献   

10.
The Himalayan mountains are a product of the collision between India and Eurasia which began in the Eocene. In the early stage of continental collision the development of a suture zone between two colliding plates took place. The continued convergence is accommodated along the suture zone and in the back-arc region. Further convergence results in intracrustal megathrust within the leading edge of the advancing Indian plate. In the Himalaya this stage is characterized by the intense uplift of the High Himalaya, the development of the Tibetan Plateau and the breaking-up of the central and eastern Asian continent. Although numerous models for the evolution of the Himalaya have been proposed, the available geological and geophysical data are consistent with an underthrusting model in which the Indian continental lithosphere underthrusts beneath the Himalaya and southern Tibet. Reflection profiles across the entire Himalaya and Tibet are needed to prove the existence of such underthrusting. Geodetic surveys across the High Himalaya are needed to determine the present state of the MCT as well as the rate of uplift and shortening within the Himalaya. Paleoseismicity studies are necessary to resolve the temporal and spatial patterns of major earthquake faulting along the segmented Himalayan mountains.  相似文献   

11.
The Himalayas has experienced varying rates of earthquake occurrence in the past in its seismo-tectonically distinguished segments which may be attributed to different physical processes of accumulation of stress and its release, and due diligence is required for its inclusion for working out the seismic hazard. The present paper intends to revisit the various earthquake occurrence models applied to Himalayas and examines it in the light of recent damaging earthquakes in Himalayan belt. Due to discordant seismicity of Himalayas, three types of regions have been considered to estimate larger return period events. The regions selected are (1) the North-West Himalayan Fold and Thrust Belt which is seismically very active, (2) the Garhwal Himalaya which has never experienced large earthquake although sufficient stress exists and (3) the Nepal region which is very seismically active region due to unlocked rupture and frequently experienced large earthquake events. The seismicity parameters have been revisited using two earthquake recurrence models namely constant seismicity and constant moment release. For constant moment release model, the strain rates have been derived from global strain rate model and are converted into seismic moment of earthquake events considering the geometry of the finite source and the rates being consumed fully by the contemporary seismicity. Probability of earthquake occurrence with time has been estimated for each region using both models and compared assuming Poissonian distribution. The results show that seismicity for North-West region is observed to be relatively less when estimated using constant seismicity model which implies that either the occupied accumulated stress is not being unconfined in the form of earthquakes or the compiled earthquake catalogue is insufficient. Similar trend has been observed for seismic gap area but with lesser difference reported from both methods. However, for the Nepal region, the estimated seismicity by the two methods has been found to be relatively less when estimated using constant moment release model which implies that in the Nepal region, accumulated strain is releasing in the form of large earthquake occurrence event. The partial release in second event of May 2015 of similar size shows that the physical process is trying to release the energy with large earthquake event. If it would have been in other regions like that of seismic gap region, the fault may not have released the energy and may be inviting even bigger event in future. It is, therefore, necessary to look into the seismicity from strain rates also for its due interpretation in terms of predicting the seismic hazard in various segments of Himalayas.  相似文献   

12.
ABSTRACT The nature of the Indian crust underthrusting the Himalaya may be studied in xenoliths within Ordovician granites in the external part of the Himalaya. These peraluminous S-type granites have travelled for c . 200 km in the Main Central (or related) thrust. The granites and xenoliths sample Indian basement now buried beneath the High Himalayan thrust pile. In low-strain granites the xenoliths reveal polyphase tectonite fabrics older than the fabrics in the country rocks. Most xenoliths show greenschist/lower amphibolite facies assemblages; none is typical granulite facies of the Indian Shield. Therefore, the portion of the Indian crust underthrusting the Himalaya may be early/middle Proterozoic reworked Indian Shield, as in peninsular India. Alternatively reworking may be assigned to the Pan-African (late Proterozoic) orogeny. This prospect is raised by recent work in East Antarctica but evidence in the Himalaya is rather ambiguous. If confirmed, a Pan-African event calls for reassessment of the geological history of the Himalayan region, particularly with respect to the placing of India in Gondwanaland.  相似文献   

13.
Despite similar geological and tectonic setting along the Himalayan orogen, distinct thermochronological/exhumational and seismicity variability exists between the Kumaun and the Garhwal regions of the NW‐ Himalaya. The processes responsible for such variability are still debated. To understand this, published thermochronological ages from several traverses across the Higher Himalayan Crystalline (HHC) and Lesser Himalayan Crystalline (LHC) have been correlated with the seismicity pattern in both Garhwal and Kumaun segments. The seismicity pattern coincides with the zone of rapid uplift and exhumation. The profiles of seismicity across the Kumaun and the Garhwal regions agree with the existence of the Main Himalayan Thrust (MHT) underlying the regions and reflect its geometry and architecture. Slip along the MHT is responsible for occurrence of seismicity on decade time‐scale and exhumation pattern on Myr time‐scale of the Himalaya.  相似文献   

14.
The Indian Plate has collided with the Eurasian Plate along an arcuate boundary over the last 55–60 million years defining the Himalayan Mountain belt. The geometry of the collision boundary is wedge-shaped; the base of this wedge is defined by a decollement named the Main Himalayan Thrust (MHT). In the Darjiling–Sikkim–Tibet (DaSiT) Himalayan wedge, a crustal-scale fault-bend fold (Kangmar Anticline) and the Lesser Himalayan Duplex (LHD) are dominant structures that have built taper and controlled the foreland-ward propagation of the thrust sheets. A frontal physiographic half-window has eroded through the Main Central Thrust (MCT) sheet to expose the LHD in the DaSiT wedge. Preliminary data suggest that active tectonics and seismicity in the DaSiT wedge may be concentrated in the half-window; this suggests that LHD may be an active structure. High-precision Global Positioning System measurements in the DaSiT wedge suggest that a minimum of 12 mm/yr convergence is being accommodated in the Darjiling–Sikkim Himalaya out of which ∼4 mm/yr convergence is being taken up in the LHD. Given that decollement earthquakes with minimum internal deformation in a deforming wedge occur when it attains critical taper, continued deformation within the DaSiT wedge and the lack of great decollement earthquakes indicate that the DaSiT Himalayan wedge is presently sub-critical and in the process of building taper. The sub-critical nature of the DaSiT wedge is probably the result of low topographic and decollement slopes, weaker rocks and pronounced erosion in the frontal part of the wedge.  相似文献   

15.
Researchers ubiquitously noted that the common processes of partitioning oblique convergence in response to drag from the trench-hanging plate simultaneously produce radial slips, along-strike translation, and extension parallel to the deformation front. Here, we focus on the area between Nepal and Sikkim–Darjeeling Himalayas, and carry out gravity and finite-element stress modeling of the strike-orthogonal converging Indian lithosphere. We delineate the geometries of different layers and their interfaces through gravity modeling. The optimum model parameters along with rheological parameters of different layers are used for finite-element modeling. Finite-element modeling is done with boundary conditions of keeping the upper surface free and rigidly fixing the section of the northern boundary below the Main Himalayan Thrust. We impart on its frontal section an amount of 6 × 1012 N/m force, equivalent to resistive force of the Himalayan–Tibet system, and analyze the maximum and minimum compressive stress fields evolved in the lithosphere. We testify our observations with earthquake database and other geophysical and geological studies. We note that an increasing flexing of the Indian lithosphere beyond the Main Boundary Thrust becomes maxima between the Main Central Thrust and South Tibetan Detachment in both the areas; however, more steepening of the Moho boundary is identified in the Sikkim–Darjeeling Himalaya. This abrupt change in lithospheric geometry beneath the Greater Himalaya is likely correlated with the sharp elevation changes in the topography. Although the highest seismicity concentration is dominant in this zone, the Lesser and the Tethys Himalayas in Sikkim–Darjeeling area also record relatively fair seismic activity. More compressive stress field in different layers right within the sharp bending zone supports this observation. We thus propose that the sharp bending zone beneath the Greater Himalaya is suffering maximum deformation, and the deformation is continued in the mantle too. We also identify both right-lateral shear and radial vergence slip, which are presumably associated with the general dynamics and kinematics of the Himalaya.  相似文献   

16.
A 2m-long sediment core from the siliceous ooze domain in the Central Indian Ocean Basin (CIOB; 13‡03′S: 74‡44′E; water depth 5099m) is studied for calcium carbonate, total organic carbon, total nitrogen, biogenic opal, major and few trace elements (Al, Ti, Fe, K, Mg, Zr, Sc,V, Mn, Cu, Ni, Zn, Co, and Ba) to understand the productivity and intensity of terrigenous supply. The age model of the sediment core is based on U-Th dating, occurrence of Youngest Toba Tuff of ∼ 74 ka and Australasian microtektites of ∼ 770 ka. Low carbonate content (< 1%) of sediment core indicates deposition below the carbonate compensation depth. Organic carbon content is also very low, almost uniform (mean 0.2 wt%) and is of marine origin. This suggests a well-oxygenated bottom water environment during the past ∼ 1100ka. Our data suggest that during ∼ 1100 ka and ∼ 400 ka siliceous productivity was lower, complimented by higher supply of terrigenous material mostly derived from the metasedimentary rocks of High Himalayan crystalline. However, during the last ∼ 400 ka, siliceous productivity increased with substantial reduction in the terrigenous sediment supply. The results suggest that intensity of Himalayan weathering, erosion associated with monsoons was comparatively higher prior to 400 ka. Manganese, Ba, Cu, Ni, Zn, and Co have around 90% of their supply from noncrustal (excess) source and their burial to seafloor remained unaffected throughout the past ∼ 1100 ka.  相似文献   

17.
GPS-derived deformation rates in northwestern Himalaya and Ladakh   总被引:1,自引:0,他引:1  
Deformation rates derived from GPS measurements made at two continuously operating stations at Leh (34.1°N, 77.6°E) and Hanle (32.7°N, 78.9°E), and eight campaign sites in the trans-Himalayan Ladakh spanning 11 years (1997–2008), provide a clear picture of the kinematics of this region as well as the convergence rate across northwestern Himalaya. All the Ladakh sites move 32–34 mm/year NE in the ITRF2005 reference frame, and their relative velocities are 13–16 mm/year SW in the Indian reference frame and ~19 mm/year W with reference to the Lhasa IGS station in southeastern Tibet. The results indicate that there is no statistically significant deformation in the 200-km stretch between the continuous sites Leh and Hanle as well as between Leh and Nubra valley sites along the Karakoram fault, whereas the sites in and around the splayed Karakoram fault region indicate surface deformation of 2.5 mm/year. Campaign sites along the Karakoram fault zone indicate a fault parallel surface motion of 1.4–2.5 mm/year in the Tangste and western Panamik segment of the Karakoram fault, which quantifies the best possible GPS-derived dextral slip rate of 3 mm/year along this fault during this 11-year period. Baselines of Ladakh sites show convergence rates of 15–18 mm/year with respect to south India and 12–15 mm/year with respect to Delhi in north India and Almora in the Himalaya ~400 km north-northeast of Delhi. These constitute an arc normal convergence of 12–15 mm/year across the western Himalaya, which is consistent with arc normal convergence all along the Himalayan arc from west to east. Baseline extension rates of 14–16 mm/year between Lhasa and Ladakh sites are consistent with the east–west extension rate of Tibetan Plateau.  相似文献   

18.
陆陆碰撞过程是板块构造缺失的链条。印度板块与亚洲板块的碰撞造就了喜马拉雅造山带和青藏高原的主体。然而,人们对印度板块在大陆碰撞过程中的行为尚不了解。如大陆碰撞及其碰撞后的大陆俯冲是如何进行的、印度板块是俯冲在青藏高原之下还是回转至板块上部(喜马拉雅造山带内)以及两者比例如何,这些仍是亟待解决的问题。印度板块低角度沿喜马拉雅主逆冲断裂(MHT)俯冲在低喜马拉雅和高喜马拉雅之下已经被反射地震图像很好地揭示。然而,关于MHT如何向北延伸,前人的研究仅获得了分辨率较低的接收函数图像。因而,MHT和雅鲁藏布江缝合带之间印度板块的俯冲行为仍是一个谜。喜马拉雅造山楔增生机制,也就是印度地壳前缘的变形机制,反映出物质被临界锥形逆冲断层作用转移到板块上部,或是以韧性管道流的样式向南溢出。在本次研究中,我们给出在喜马拉雅造山带西部地区横过雅鲁藏布江缝合带的沿东经81.5°展布的高分辨率深地震反射剖面,精细揭示了地壳尺度结构构造。剖面显示,MHT以大约20°的倾斜角度延伸至大约60 km深度,接近埋深为70~75 km的Moho面。越过雅鲁藏布江缝合带运移到北面的印度地壳厚度已经不足15 km。深地震反射剖面还显示中地壳逆冲构造反射发育。我们认为,伴随着印度板块俯冲,地壳尺度的多重构造叠置作用使物质自MHT下部的板块向其上部板块转移,这一过程使印度地壳厚度减薄了,同时加厚了喜马拉雅地壳。  相似文献   

19.
The central gap region of Himalaya, which lies in the northern part of the Indian subcontinent, is exposed to great seismic hazard. A three-dimensional attenuation structure (Q) of this region is obtained using the intensity data of four earthquakes (M 4.3–7.0) in the central Himalayan gap region and the damped least square inversion scheme. The technique is based on that given by Hashida and Shimazaki (J Phys Earth 32:299–316, 1984). The obtained Q structure explains the spatial distribution of isoseismals of the stronger earthquakes, which occurred in the recent past. The study area covers the Tehri town, which is the locale of one of the biggest earth fill dams of height 260 m. The spatial distribution of Q suggests that the Tehri town area is surrounded by lower Q medium, and hence any large earthquake in Tehri will pose great seismic hazard.  相似文献   

20.
Nepal can be divided into the following five east–west trending major tectonic zones. (i) The Terai Tectonic Zone which consists of over one km of Recent alluvium concealing the Churia Group (Siwalik equivalents) and underlying rocks of northern Peninsular India. Recently active southward-propagating thrusts and folds beneath the Terai have affected both the underlying Churia and the younger sediments. (ii) The Churia Zone, which consists of Neogene to Quaternary foreland basin deposits and forms the Himalayan mountain front. The Churia Zone represents the most tectonically active part of the Himalaya. Recent sedimentologic, geochronologic and paleomagnetic studies have yielded a much better understanding of the provenance, paleoenvironment of deposition and the ages of these sediments. The Churia Group was deposited between ∼14 Ma and ∼1 Ma. Sedimentary rocks of the Churia Group form an archive of the final drama of Himalayan uplift. Involvement of the underlying northern Peninsular Indian rocks in the active tectonics of the Churia Zone has also been recognised. Unmetamorphosed Phanerozoic rocks of Peninsular India underlying the Churia Zone that are involved in the Himalayan orogeny may represent a transitional environment between the Peninsula and the Tethyan margin of the continent. (iii) The Lesser Himalayan Zone, in which mainly Precambrian rocks are involved, consists of sedimentary rocks that were deposited on the Indian continental margin and represent the southernmost facies of the Tethyan sea. Panafrican diastrophism interrupted the sedimentation in the Lesser Himalayan Zone during terminal Precambrian time causing a widespread unconformity. That unconformity separates over 12 km of unfossiliferous sedimentary rocks in the Lesser Himalaya from overlying fossiliferous rocks which are >3 km thick and range in age from Permo-Carboniferous to Lower to Middle Eocene. The deposition of the Upper Oligocene–Lower Miocene fluvial Dumri Formation records the emergence of the Himalayan mountains from under the sea. The Dumri represents the earliest foreland basin deposit of the Himalayan orogen in Nepal. Lesser Himalayan rocks are less metamorphosed than the rocks of the overlying Bhimphedis nappes and the crystalline rocks of the Higher Himalayan Zone. A broad anticline in the north and a corresponding syncline in the south along the Mahabharat range, as well as a number of thrusts and faults are the major structures of the Lesser Himalayan Zone which is thrust over the Churia Group along the Main Boundary Thrust (MBT). (iv) The crystalline high-grade metamorphic rocks of the Higher Himalayan Zone form the backbone of the Himalaya and give rise to its formidable high ranges. The Main Central Thrust (MCT) marks the base of this zone. Understanding the origin, timing of movement and associated metamorphism along the MCT holds the key to many questions about the evolution of the Himalaya. For example: the question of whether there is only one or whether there are two MCTs has been a subject of prolonged discussion without any conclusion having been reached. The well-known inverted metamorphism of the Himalaya and the late orogenic magmatism are generally attributed to movement along the MCT that brought a hot slab of High Himalayan Zone rocks over the cold Lesser Himalayan sequence. Harrison and his co-workers, as described in a paper in this volume, have lately proposed a detailed model of how this process operated. The rocks of the Higher Himalayan Zone are generally considered to be Middle Cambrian to Late Proterozoic in age. (v) The Tibetan Tethys Zone is represented by Cambrian to Cretaceous-Eocene fossiliferous sedimentary rocks overlying the crystalline rocks of the Higher Himalaya along the Southern Tibetan Detachment Fault System (STDFS) which is a north dipping normal fault system. The fault has dragged down to the north a huge pile of the Tethyan sedimentary rocks forming some of the largest folds on the Earth. Those sediments are generally considered to have been deposited in a more distal part of the Tethys than were the Lesser Himalayan sediments.The present tectonic architecture of the Himalaya is dominated by three master thrusts: the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The age of initiation of these thrusts becomes younger from north to south, with the MCT as the oldest and the MFT as the youngest. All these thrusts are considered to come together at depth in a flat-lying decollement called the Main Himalayan Thrust (MHT). The Mahabharat Thrust (MT), an intermediate thrust between the MCT and the MBT is interpreted as having brought the Bhimphedi Group out over the Lesser Himalayan rocks giving rise to Lesser Himalayan nappes containing crystalline rocks. The position of roots of these nappes is still debated. The Southern Tibetan Detachment Fault System (STDFS) has played an important role in unroofing the higher Himalayan crystalline rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号