首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units — the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.  相似文献   

2.
First results are presented of a recent onshore seismic survey complementary to the Valsis-2 Cruise, which consisted of ESP, COP and CDP marine seismic profiles across the Valencia Trough (Western Mediterranean).The marine energy source used was an airgun array of 5800 cubic inch recorded at 2 land stations on the western flank of the Valencia Trough, at distances between 10–120 km.The experiment has resulted in an extended sampling of the deep crustal structure of the eastern Mediterranean flank of the Iberian peninsula, as well as the offshore-onshore transition.Three transverse NW-SE profiles have been interpreted. Local thinning of the sedimentary cover has been determined towards the centre of the basin which, together with the shallow high velocities observed on the southern profile, could be related to volcanic episodes.A seismic continental basement has been found at depths between 3 and 5 km. A thin lower crust (3–5 km) with velocities around 6.8 km/s has been identified in the northern part of the basin. Alternative crustal models considered for the 3 profiles have been tested, not only from arrival times but also from relative amplitude distributions. A first-order Moho discontinuity fits the data best. The welldefined Moho boundary results in energetic PMP reflections, and a clear updoming is observed towards the interior of the basin, from depths about 20–21 km inshore of Barcelona to 15–17 km depths 60 km offshore. An anomalous upper mantle with low Pn velocities of about 7.7 km/s is confirmed in most of the sampled areas.  相似文献   

3.
复杂介质结构中折射界面的哈格多恩原理波前成像   总被引:6,自引:4,他引:6       下载免费PDF全文
在城市活断层探测中 ,浅层结构常常表现为强烈的非均匀性 ,界面横向强烈起伏 ,层内速度变化较大 ,传统的基于平界面均匀层模型的折射资料处理方法不能适用。研究开发能应用于复杂介质结构中折射资料处理的方法就显得十分必要。文中基于惠更斯原理 ,用波前扩张法对波场作正演计算 ,根据哈格多恩折射波前成像原理 ,在lecomte算法和Hole有限差分计算程序的基础上 ,开发出 1种复杂介质结构中折射资料的处理方法与软件 ,并用此方法处理了福州城市活断层折射探测试验中在义序完成的 2条折射剖面资料。结果表明 :探测区浅层为 3层结构 ,分别为盖层、强风化层和基岩。基岩顶界面的埋深约为 5 8~ 5 2m ,盖层P波速度变化较大  相似文献   

4.
The Latera field (Vulsini volcanic complex, Latium, Italy) is one of the geothermal areas of the peri-Tyrrhenian belt along which a regional, high thermal anomaly has been detected. So far nine deep wells have been drilled within the Latera caldera and four of them have been productive. The geothermal reservoir is located within the fractured carbonatic rocks of the Tuscan nappe; the overlying volcanic units, sealed by hydrothermal minerals (mainly calcite and anhydrite), act as an impervious cover.The fluid produced by the wells comes from a deep aquifer (about 1000–1500 m depth) which at present is not connected with the shallow aquifer in the volcanoclastic units. Fluid temperatures range between 200 and 230°C; in-hole temperatures as high as 343°C at 2775 m depth have been measured in dry wells.The study of the newly formed mineral assemblages from both volcanic and sedimentary units as sampled from the geothermal wells can be used to reconstruct the thermal evolution of the geothermal field. The intrusion of a syenitic melt, up to a depth of about 2000 m, dated 0.86 Ma, represents the major thermal event for the units in the area and is assumed to represent the first step in the geothermal evolution of the Latera system.The above mentioned newly formed mineral assemblages can be divided into three groups: (a) “contact-metasomatic”: calcite, anhydrite, diopsidic pyroxene, grossularitic garnet, phlogopite, wollastonite or monticellite; (b) “high-temperature hydrothermal”: calcite, anhydrite, K-feldspar, vesuvianite, melanitic garnet, tourmaline, amphibole, epidote, sulphides; (c) “low-temperature hydrothermal”: calcite, anhydrite, K-feldspar, clay minerals, sulphides. Group (a) minerals are now relics. Part of (b) and all of (c) group are still in equilibrium with the existing conditions in different parts of the geothermal system.Thermodynamic calculations on the observed mineral assemblages permitted estimates of the P, T conditions and gas fugacities.  相似文献   

5.
收集了大三江盆地及其邻区区域地震台网及多个流动台阵的连续波形及远震事件资料,采用背景噪声层析成像和接收函数叠加方法,分别获得了研究区三维S波速度结构、基底及莫霍面深度和泊松比.结果显示:浅层速度结构较好地反映了地表地形及地质特征,三江盆地呈明显的低速,虎林和勃利等小型盆地的S波速度也相对较低,而小兴安岭、张广才岭等则呈...  相似文献   

6.
Interpretation techniques are presented that aim at the estimation of seismic velocities. The application of localized slant stacks, weighted by coherency, produces a decomposition of multichannel seismic data into single trace instantaneous slowness p(x, t) components. Colour displays support the interpretation of seismic data relevant to the near surface velocity structure. Since p(x, t) is directly related to stacking velocities and the depth of reflection, or bottoming points, in the subsurface, this data transformation provides a powerful tool for the inversion of reflection and refraction data.  相似文献   

7.
A two dimensional velocity model of the upper mantle has been compiled from a long-range seismic profile crossing the West Siberian young plate and the old Siberian platform. It revealed considerable horizontal and vertical heterogeneity of the mantle. A sharp seismic boundary at a depth of 400 km outlines the high-velocity gradient transition zone, its base lying at a depth of 650 km. Several layers with different velocities, velocity gradients and wave attenuation are distinguished in the upper mantle. They likewise differ in their inner structure. For instance, the uppermost 50–70 km of the mantle are divided into blocks with velocities from 7.9–8.1 to 8.4–8.6 km s?1.Comparison of the travel-time curves for the Siberian long-range profile with those compiled from seismological data for Europe distinguished large-scale upper mantle inhomogeneities of the Eurasian continent and allowed for the correlation of tectonic features and geophysical fields. The velocity heterogeneity of the uppermost 50–100 km of the mantle correlates with the platform age and heat flow, i.e., the young plates of Western Europe and Western Siberia have slightly lower velocities and higher heat flows than the ancient East European and Siberian platforms. At greater depths (150–250 km) the upper mantle velocities increase from the ocean to the inner parts of the continent. The structure of the transition zone differs significantly beneath Western Europe and the other parts of Eurasia. The sharp boundary at a depth of 400 km, traced throughout the whole continent as the boundary reflecting intensive waves, transforms beneath Western Europe into a gradient zone. This transition zone feature correlates with positions of the North Atlantic-west Europe geoid and heat-flow anomalies.  相似文献   

8.
—Methods and the results of estimating the anomalies characterising the density inhomo geneities in the European-Mediterranean upper mantle are described. These anomalies were obtained by subtracting the gravity effect of a crustal density model derived from seismic velocities from the observed gravity field averaging over an area of 1°× 1°. The 3-D density model of the study region comprises two regional layers of varying thickness with lateral variation of average density the sedimentary cover and the crystalline crust. The average densities for model layers were evaluated by using a velocity/density conversion function and taking into account sediment consolidation with depth. Clear correlation between residual gravity anomalies and both velocity heterogeneities and thermal regime data of the upper mantle has been revealed. An agreement of positive anomalies over the Alps, the Adriatic plate and the Calabrian Arc with high velocity domains in the upper mantle and reduced temperatures at the subcrustal layer are caused by lithospheric "roots" and thickened lithosphere below these structures. Gravity residual lows, revealed over the Western Mediterranean Basin and Pannonian Basin, are in correspondence with both low velocities and high temperatures in the upper mantle. These anomalies are the result of the presence of asthenosphere in shallow near-Moho depths below these basins.  相似文献   

9.
We construct and evaluate a new three-dimensional model of crust and upper mantle structure in Western Eurasia and North Africa (WENA) extending to 700 km depth and having 1° parameterization. The model is compiled in an a priori fashion entirely from existing geophysical literature, specifically, combining two regionalized crustal models with a high-resolution global sediment model and a global upper mantle model. The resulting WENA1.0 model consists of 24 layers: water, three sediment layers, upper, middle, and lower crust, uppermost mantle, and 16 additional upper mantle layers. Each of the layers is specified by its depth, compressional and shear velocity, density, and attenuation (quality factors, Q P and Q S ). The model is tested by comparing the model predictions with geophysical observations including: crustal thickness, surface wave group and phase velocities, upper mantle n velocities, receiver functions, P-wave travel times, waveform characteristics, regional 1-D velocities, and Bouguer gravity. We find generally good agreement between WENA1.0 model predictions and empirical observations for a wide variety of independent data sets. We believe this model is representative of our current knowledge of crust and upper mantle structure in the WENA region and can successfully be used to model the propagation characteristics of regional seismic waveform data. The WENA1.0 model will continue to evolve as new data are incorporated into future validations and any new deficiencies in the model are identified. Eventually this a priori model will serve as the initial starting model for a multiple data set tomographic inversion for structure of the Eurasian continent.  相似文献   

10.
The surface wave tomography from ambient seismic noise recorded at stations in Western Europe (WE) and on the East European Platform (EEP) revealed the structure of the crust and upper mantle in the transitional zone from the Precambrian platform to the younger geological units in Western Europe. The Tornquist-Teisseyre Line separating these structures is clearly traced as a transition zone from the high velocities beneath EEP to the low velocities beneath WE in the crust and upper mantle, which extends to a depth of 150?C170 km. Below 200 km the relationship between the velocities beneath EEP and WE becomes the opposite. A similar relationship between the velocities in the upper mantle down to a depth of 300 km is observed on the southern boundary, where EEP borders on the northern segment of the Alpine-Himalayan seismic belt.  相似文献   

11.
The elastic properties of granites from Western Bohemia which we measured and published earlier have been supplemented with measurements of olivine nephelinite from the same region and with data on lherzolitic xenolith from the vicinity of elezný Brod. The set of velocities measured under laboratory conditions has been compared with depth profiles suggested for the purpose of locating seismic swarm events which occur in this region. P-wave velocities were measured under pressures of up to 400 MPa. This pressure corresponds to depths of about 15 km for this region. The data were extrapolated for larger depths. Comparing laboratory measurements and seismic profiles, we can conclude that the rocks under study may be constituents of crust structures.  相似文献   

12.
Tomographic Imaging of Lg and Sn Propagation in the Middle East   总被引:1,自引:0,他引:1  
?—?Observations based on relatively limited data recorded by sparsely distributed stations have indicated that regional seismic phase propagation (Lg and Sn) is very complex in the Middle East. Accurate characterization of regional seismic wave propagation in this region necessitates the use of a large number of seismic stations. We have compiled a large data set of regional and local seismograms recorded in the Middle East. This data set comprises approximately four years of data from national short-period networks in Turkey and Syria, data from temporary broadband arrays in Saudi Arabia and the Caspian Sea region, and data from GSN, MEDNET, and GEOFON stations in the Middle East. We have used this data set to decipher the character and pattern of regional seismic wave propagation. We have mapped zones of blockage as well as inefficient and efficient propagation for Lg, Pg, and Sn throughout the Middle East. Two tomographic techniques have been developed in order to objectively determine regions of lithospheric attenuation in the Middle East.¶We observe evidence of major increase in Lg attenuation, relative to Pg, across the Bitlis suture and the Zagros fold and thrust belt, corresponding to the boundary between the Arabian and Eurasian plates. We also observe a zone of inefficient Sn propagation along the Dead Sea fault system which coincides with low Pn velocities along most of the Dead Sea fault system and with previous observations of poor Sn propagation in western Jordan. Our observations indicate that in the northern portion of the Arabian plate (south of the Bitlis suture) there is also a zone of inefficient Sn propagation that would not have been predicted from prior measurements of relatively low Pn velocities. Mapped high attenuation of Sn correlates well with regions of Cenozoic and Holocene basaltic volcanism. These regions of uppermost mantle shear-wave attenuation most probably have anomously hot and possibly thin lithosphere.  相似文献   

13.
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects.  相似文献   

14.
The dispersion curves of the Rayleigh wave group velocities are constructed along 60 interstation seismic paths in Central Europe based on the cross-correlation function of seismic noise. Together with the previous data (Yanovskaya and Lyskova, 2013), this information was used for reconstructing the three-dimensional distribution of S-wave velocities in the upper mantle of the Carpathian region. In the present work, the previous results are refined by expanding the data set by the additional seismic paths that intersect the Carpathian region and by modifying the procedure for constructing the locally averaged dispersion curves so as to obtain a more compact resolution. The results of the study suggest the complex, multidirectional character of the plate motion in the region.  相似文献   

15.
A new set of three-dimensional velocity models beneath Mt. Etna volcano is derived in the present work. We have used P- and S-wave arrivals from local earthquakes recorded at permanent and temporary seismic networks installed since 1980. A set of 1249 earthquakes recorded at more than four seismic stations was selected for traveltime inversion. The velocity models obtained by using different data selection criteria and parametrization display similar basic features, showing a high P-wave velocity at shallow depth in the SE quadrant, in close connection with a high gravimetric Bouguer anomaly. This area shares a low Vp/Vs ratio. High P-wave velocities and high Vp/Vs ratios are obtained along the central conduits, suggesting the presence of dense, intrusive magmatic bodies extending to a depth of about 20 km. The central intrusive core is surrounded by lower P-wave velocities. The relocated earthquake hypocenters also display the presence of an outward dipping brittle region, away from the central conduits, surrounding a ductile zone spatially related to the high P-wave velocity anomalies located in proximity to the central craters.  相似文献   

16.
In order to investigate crustal structure beneath the eastern Marmara region, a seismic refraction survey was conducted across the North Anatolian Fault (NAF) zone in north west Turkey. Two reversed profiles across two strands of the NAF zone were recorded in the Armutlu Highland where a tectonically active region was formed by different continents. We used land explosions in boreholes and quarry blasts as seismic sources. A reliable crustal velocity and depth model is obtained from the inversion of first arrival travel times. The velocity-depth model will improve the positioning of the earthquake activities in this active portion of the NAF. A high velocity anomaly (5.6–5.8 km s−1) in the central highland of Armutlu block and the low velocity (4.90 km s−1) pattern north of Iznik Lake are the two dominant features. The crustal thickness is about 26 ± 2 km in the north and increases to about 32 ± 2 km beneath the central Armutlu block in the south. P-wave velocities are about 3.95 km s−1 to 4.70 km s−1 for the depth range between about 1 km and 5 km in the upper crust. The eastern Marmara region has different units of upper crust with velocities varying with depth to almost 8 km. The high upper crust velocities are associated with Armutlu metamorphic rocks, while the low velocity anomalies are due to unconsolidated sedimentary sequences. The western side of Armutlu block has complex tectonics and is well known for geothermal sources. If these sources are continuous throughout the portions of the crust, it may be associated with a granitic intrusion and deformation along the NAF zone. That is, the geothermal sources associated with the low velocity may be due to the occurrence of widespread shear heating, even shear melting. The presence of shear melting may indicate the presence of crustal fluid imposed by two blocks of the NAF system.  相似文献   

17.
There is a significant increase in terrestrial heat flow with depth in the Hinton-Edson area of the deep part of the western Canadian sedimentary basin in Alberta. This is especially true near the Rocky Mountain foothills which is an area of high relief, high hydraulic head and regional water recharge. Gravity-imposed downward movement of meteoric water through the thick sedimentary strata with velocities as low as 10–10 m/s to 0.5 × 10–9 m/s may cause an increase of heat flow with depth. Such disturbance of heat flow with depth on a regional scale in the sedimentary strata means that it is not possible to determine the background conductive steady-state heat flow associated with crustal or upper mantle heat sources in such an area from measurement of conductive heat flow in the part of the sedimentary column where water movement occurs. This is because the convective portion cannot be determined, particularly when measurements are made in only part of the regional hydrodynamic system of the basin.  相似文献   

18.
We present a new regional three-layer crustal model for the Central and Southern Asia and surroundings (AsCRUST-08). The model provides Moho boundary, thickness of different layers of consolidated crust and P-velocity distribution in these layers. A large volume of new data on seismic reflections and refractions as well as on surface waves generated by earthquakes or blasts was analyzed. All these data were incorporated into a unified digital 3D integrated model with 1° × 1° resolution. Results are represented as seven numerical maps imaging the distributions of the Moho depth, the thickness of the upper, middle, and lower layers of the consolidated crust, and the P-wave velocities therein.  相似文献   

19.
Geotemperature and heat flow patterns in a large-scale Meso-Cenozoic basin such as the North China Basin are strongly affected by the relief of the basement, and controlled by the contrast of thermal conductivity between basement rock and sedimentary cover. Usually, heat flow observed at the surface of a basement uplift is greater than that of a basement depression. Calculation revealed, that the ratio of the former and the latter is determined by the uplifted height (H) of the bed-rock roof of the basement and the thickness (h) of the sedimentary cover. The relief of the basement also disturbs the geotemperature and, hence, the heat flow patterns at shallow depth. Consequently, the more or less “uniform” one dimensional heat flow from the deep interior of the Earth becomes two dimensional at shallow depth with great lateral and vertical variations. The extent of the disturbed zone is also controlled by the contrast of the thermal conductivity between basement rock and sedimentary cover as well as the uplifted heigh (H) of the bed-rock roof of the basement. Numerical computation demonstrated that the disturbed depth (Ze) is usually about 3–6 times of the uplifted height (H) of a basement uplift.  相似文献   

20.
If the site at which receiver functions are constructed is filled by sediments, then the waveforms from these receiver functions are dominantly controlled by the sedimentary structures within the first few seconds after the direct P arrival. Based on this observation, waveform data collected at 44 temporary seismic stations have been used to image the sedimentary structure of the Bohai Bay Basin, a major continental petroliferous basin in Eastern China. An adapted hybrid global waveform inversion method was applied to the receiver functions to extract structural information beneath each of the stations. The derived S-velocity structure provides for the first time, a basin-scale seismic image of detailed sedimentary stratification. The sedimentary cover of the basin is about 2-12 km thick, consisting of Cenozoic, Mesozoic, and Paleozoic strata from top to bottom. The structural features presented in the S-velocity image coincide quite well with the depression-uplift type of tectonic system in the Bohai Bay Basin. The reconstructed morphology of the sedimentary layers provides seismological evidence for the two-stage evolution of the intracontinental basin that were caused by an intensive tectonic regime transition in late Mesozoic immediately following the lithospheric reforming of the Eastern China continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号