首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A model of a first generation intermediate star of 5M , with Z=0 has been considered. The model is at an advanced stage of its evolution and has a double shell burning. It burns helium in the inner shell, and hydrogen, via CNO cycle, in the outer shell. =(log/log) T and T =(log/logT) were computed allowing for the oscillations of the relative mass abundance of the reagents in nuclear reactions. Including =(log/log) T and =(log/logT) of mean molecular weight and the effect of the oscillations of abundances due to nuclear reactions, stability was studied. Contrary to the results of the static calculations, we found that instability due to the excitation mechanism provided by the high temperature sensitivity of energy generation rate propagates up to the surface. Thus the model in question was found to be unstable against radial adiabatic pulsations, in its fundamental mode.  相似文献   

2.
The phase relation of the poloidal and toroidal components of the solar-cycle general magnetic fields, which propagate along isorotation surfaces as dynamo waves, is investigated to infer the structure of the differential rotation and the direction of the regeneration action of the dynamo processes responsible for the solar cycle. It is shown that, from the phase relation alone, (i) the sign of the radial gradient of the differential rotation (/r) can be determined in the case that the radial gradient dominates the differential rotation, and (ii) the direction of the regeneration action can be determined in the case that the latitudinal gradient (/) dominates the differential rotation. Examining the observed poloidal and toroidal fields, it is concluded that (i) the / should dominate the differential rotation, and (ii) the determined sign of the regeneration factor (positive [negative] in the northern [southern] hemisphere) describing the direction of the regeneration action requires that the surface magnetic fields should originate from the upper part of the convection zone according to the model of the solar cycle driven by the dynamo action of the global convection.  相似文献   

3.
A static relativistic theory of the stability of the equilibrium of an isentropic spherically-symmetric star is deduced from the properties of a functionu which is solution of a second-order differential equation, and which is related to the model by means of the formulau = m(v, c)/c, wherem is the mass-energy inside the coordinate volumev and c is the central mass-energy density.Work done in the Laboratorio Astrofisico di Frascati, Roma.  相似文献   

4.
The process of re-escalation of the scalar field as R 3, the energy density as R 3, and the pressurep aspR 3P, lends itself to obtain a reduced equation that represents, for a wide variety of equations of state, the cosmological evolution of an homogeneous and isotropic, flat Universe. A particular solution to this equation is presented.  相似文献   

5.
Following up our previous analysis of cyclotron radiation in anisotropic plasmas, we derived expression for the power received at a far field point per unit frequency range along the group velocity direction dP(, )/d. We then carry out a series of numerical analysis presenting the spectral features rather than directional features of cyclotron radiation. In particular, we analyse the power received per unit solid angle per unit frequency range d2 P(, )/(d d). It is expected the analysis result presented here can be compared directly with observation for parameters pertaining to astrophysical plasmas in stellar and terrestrial atmospheres.  相似文献   

6.
7.
In this paper we find that from the exact solution for Bianchi type-V in the Brans-Dicke theory with =0 the Hubble parameters are the same for , so that the Universe will be isotropized.  相似文献   

8.
In a previous paper (Paper I), we studied a dynamo model of the Babcock-Leighton type (i.e., the surface eruptions of toroidal magnetic field are the source for the poloidal field) that included a thin, deep seated, generating layer (GL) for the toroidal field, B. Meridional motions (of the order of 12 m s–1 at the surface), rising at the equator and sinking at the poles were essential for the dynamo action. The induction equation was solved by approximating the latitudinal dependence of the fields by Legendre polynomials. No solutions were found with p = f where p and f are the fluxes for the preceding and following spot, respectively. The solutions presented in Paper I, had p = –0.5 f , were oscillatory in time, and large radial fields, B, were present at the surface.Here, we resume the study of Paper I with a different numerical approach allowing for a much higher resolution in , the polar angle. The time dependent partial differential equations for the toroidal and poloidal field are solved with the help of a second order, time and space centered, finite difference scheme. Oscillatory solutions with p = f are found for various values of the meridional motions and diffusivity coefficients. The surface values of B, while considerably smaller than those of Paper I, are still unacceptably large, specially at the poles. The reason can be traced to the eruption of toroidal field at high latitudes. It appears that in order to obtain small values for the radial field in the polar regions, high latitude sources ( smaller than /4, say), must reach their maximum below the surface. Weaker meridional motions near the poles than in the equatorial region are also suggested.  相似文献   

9.
A novel methodology for evaluating the field of anisotropically scattered radiation within a homogeneous slab atmosphere of arbitrary optical thickness is provided. It departs from the traditional radiative transfer approach in first considering that the atmosphere is illuminated by an isotropic light source. From the solution of this problem, it subsequently proceeds to that for the more conventional case of monodirectional illumination. The azimuthal dependence of the field is separated in the usual manner by an harmonic expansion, leaving a problem in four dimensions (=optical depth, 0=thickness, , =directions of incidence and scattering) which, as is well known, is numerically extremely inconvenient. Two auxiliary radiative transfer formulations of increasing dimensionality are considered: (i) a transfer equation for the newly introduced functionb m(,,0) with Sobolev's function m(,0) playing the role of a source-function. Because the incident direction does not intervene, m is simply expressed as a single integral term involvingb m. For bottom illumination, an analogous equation holds for the other new functionh m(,,0). However, simple reciprocity relations link the two functions so that it is only necessary to considerb m; (ii) a transfer equation for the other new functiona m(,,,0) with a source-function provided by Sobolev's functionD m(,,0). For bottom illumination, another functionf m(,,,0) is introduced; by a similar argument using reciprocity relations,f m is reduced toa m rendering necessary only the consideration ofa m. However, a fundamental decomposition formula is obtained which shows thata m is expressible algebraically in terms of functions of a single angular variable. The functions m andD m are shown to be the values in the horizontal plane ofb m anda m, respectively. The other auxiliary functionsX m andY m are also expressed algebraically in terms ofb m. These results enable one to proceed to the final step of evaluating the radiation field for monodirectional illumination. The above reductions toalgebraic relations involving only the functionb m appear to be more advantageous than Sobolev's (1972) recent approach; they also circumvent some basic numerical difficulties in it. We believe the present approach may likewise prove to be superior to most (if not all) other methods of solution known heretofore.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory under Contract No. NAS-7-100 sponsored by the National Aeronautics and Space Administration.  相似文献   

10.
The method of estimation of the limits, containing the equator inclination of a celestial body, had been developed. In this method it is necessary to know the orbital elements and the mass of a celestial body. Another condition is that the axial rotation of a body should be in the resonance with its orbital motion. It has been found that the equator inclinations should have the values between 1 .7 and 2 .6 for Mercury and between 1 .0 and 1 .8 for the Moon. It also has been found that largest harmonics in Mercury's physical libration are the harmonics sin( – 3g), cos( – 3g), sin g and sin 2.  相似文献   

11.
A dynamo model of the Babcock-Leighton type having the following features is studied. The toroidal fieldB is generated in a thin layer (the GL), located at the lower solar convection zone, by a shear in the angular velocity acting on the poloidal fieldB p (= × [0, 0,A ].) If, in this layer, and for a certain value of the polar angle,, |B Ø | exceeds a critical field,B cr , then the eruption of a flux tube occurs. This flux tube, which is assumed to rise radially, generates, when reaching the surface, a bipolar magnetic region (BMR) with fluxes p and f for the preceding and following spot respectively. For the purpose of the numerical calculations this BMR is replaced by its equivalent axisymmetrical magnetic ring doublet. The ensemble of these eruptions acts as the source term for the poloidal field. This field, generated in the surface layers, reaches the lower solar convection by transport due to meridional motions and by diffusion. The meridional motions are the superpositions of a one-cell velocity field that rises at the equator and sinks at the poles and of a two-cell circulation that rises at the equator and poles and sinks at mid latitudes. The toroidal field andA Ø were expanded in Legendre polynomials, and the coupled partial differential equations (int andr; time and radial coordinate) satisfied by the coefficients in these expansions were solved by a finite difference method. In the expansions, Legendre polynomials up to order thirty were included.In spite of an exhaustive search no solutions were found with p = – f . The solutions presented in this paper were obtained with p = –0.5 f . In this case, the northern and southern hemisphere are not entirely decoupled since lines of force join both hemispheres. Most of the solutions found were periodic. For the one-cell meridional flow described above and for a purely radial shear in the GL (the angular velocity increasing inwards) the dynamo wave propagates from the pole towards the equator. The new cycle starts at the poles while the old cycle is still present in the equatorial regions.  相似文献   

12.
J. J. Aly 《Solar physics》1989,120(1):19-48
Using a simple model in which the corona is represented by the half-space domain = {z > 0} and the photosphere by the boundary plane = {z = 0}, we discuss some important aspects of the general problem of the reconstruction of the magnetic field B in a small isolated coronal region from the values of the vector B¦ measured by a magnetograph over its whole basis. Assuming B to be force-free in : (i) we derive a series of relations which must be necessarily satisfied by the boundary field B¦ , and then by the magnetograph data if the force-free assumption is actually correct; (ii) we show how to extract directly from the measured B¦ some useful informations about the energy of B in and the topological structure of its field lines; (iii) we present a critical discussion of the two methods which have been proposed so far for computing effectively B in from B¦ .  相似文献   

13.
General theory of electrical conductivity of a multicomponent mixture of degenerate fermions in a magnetic fieldB, developed in the preceding article (this volume), is applied to a matter in neutron star interiors at densities 0, where 0 = 2.8×1014 g cm–3 is the standard nuclear matter density. A model of free-particle mixture ofn, p, e is used, with account for appearance of -hyperons at > c , where c 40. The electric resistivities along and acrossB, and , and the Hall resistivity H are calculated and fitted by simple analytical formulae at c and > c for the cases of normal or superfluid neutrons provided other particles are normal. Charge transport alongB is produced by electrons, due to their Coulombic collisions with other charged particles; is independent ofB and almost independent of the neutron superfluidity. Charge transport acrossB at largeB may be essentially determined by other charged particles. If c , one has = [1 + (B/B 0)2] for the normal neutrons, and for the superfluid neutrons, while H = B/B e for both cases. HereB e 109 T 8 2 G,B 01011 T 8 2 G, andT 8 is temperature in units of 108 K. Accordingly for the normal neutrons atBB 0, the transverse resistivity suffers an enhancement, 1/4 1. When 50 andB varies from 0 toBB p 1013 T 8 2 G, increases by a factor of about 103–104 and H changes sign. WhenBB p , remains constant for the superfluid neutrons, and H B 2 for the normal neutrons, while H B for any neutron state. Strong dependence of resistivity onB, T, and may affect evolution of magnetic fields in neutron star cores. In particular, the enhancement of at highB may noticeably speed up the Ohmic decay of those electric currents which are perpendicular toB.  相似文献   

14.
We develop an automatic, computer controlled procedure to select and to analyze the Network Bright Points (NBPs) on solar images. These have been obtained at the Sac Peak Vacuum Tower Telescope by means of the Universal Birefringent Filter and Zeiss H filters, tuned, respectively, along the profiles of the H, Mg-b1, Na-D2, and H lines.A structure is identified as an NBP if at the wavelength H- 1.5 A its maximum intensity is greater than I + 3 and its area is greater than 1.5 arc sec2 at I + 1.5, where I is the mean value and the standard deviation of the intensity distribution on the image. Each detected NBP is then searched and confirmed in all the remaining 31 images at different wavelengths.For each NBP several parameters are measured (position, area, mean and maximum contrast, Dopplergram velocity, compactness, and so on) and some identification constraints are applied.The statistical analysis of the various parameter distributions, for NBPs present within an active region and its surroundings, shows that two types of NBPs can be identified according to the value of their mean contrast C min the H- 1.5 Å image (C m 0.1 type I, C m> 0.1 type II). The type I NBPs (all occurring on the boundaries of the supergranular network) appear to be much more frequent (180/26) than the type II ones.The size A of type I NBPs is less than 1.0 arc sec for H/H wings but of the order of 1.2 arc sec for Na-D2 and Mg-bl. The mean contrast C m is around the value of 10% along the Na-D2 and Mg-bl profiles and of 20% along the H/H wings.The C m - A scatter diagrams show, for the photospheric radiation (h < 100 km), a narrow range of variability for C min correspondence with a wide range for A. For radiation orginated at higher levels (h > 200 km), the C m- A scatter diagrams seem to indicate, even if with a large variance, that the highest C m's tend to correspond to the highest A values.The mean Doppler shift is close to zero for Na-D2 and Mg-bl lines but negative (downward motion) for H and H lines.The type II NBPs tends to be preferentially located in the neighbourhood of small, compact sunspots and their detectability is almost constant through all the 4 studied line profiles. No conclusions can be derived on the mean size, contrast and Doppler shift values because their distributions are too dispersed. The only positive information is that its C m- A scatter diagram, in H and H wings, indicates a wide range of variability for C m in correspondence with very narrow range of variability for A.  相似文献   

15.
Romano  P.  Contarino  L.  Zuccarello  F. 《Solar physics》2003,214(2):313-323
In this paper we analyze the eruption of a prominence, characterized by a helical-like structure and by a non-linear rising motion. We approximated the prominence as a cylindrical curved flux tube and estimated the behaviour of several geometrical parameters during the activation and the eruption phases. We determined that, at the onset of the activation, the number N of turns of a magnetic field line over the whole length of the prominence was 5.0, while the value of the ratio P/r 0 between the pitch of the magnetic field lines and the prominence width was 0.45. These values are in good agreement with those predicted by the kink-mode instability. Moreover, we found a decrease of the total twist of one helical thread from 10 to 2 during the prominence eruption, indicating a relaxation of the magnetic field towards a less twisted configuration. We conclude that the prominence was initially destabilized by the kink-mode instability and, not succeeding in finding a new equilibrium configuration, it erupted.  相似文献   

16.
Helicity of solar magnetic fields plays an important role in dynamo theories of the solar cycle. The helicity has been known to vary with the main 11-year period (Hale's cycle). Recent observations have revealed significant helicity variations on a shorter time scale, with a characteristic period of approximately 2 years. We suggest an explanation for the observed variations of the magnetic helicity, based on our model of the double magnetic cycle of solar activity. The quasi-biennial variations of the helicity are the consequence of the influence of erupted magnetic fields of the main cycle on the helicity in the regions of generation of the high-frequency component of magnetic field. This model suggests that the low-frequency component is generated at the base of the convective zone due to large-scale radial shear /r of angular velocity . The high-frequency component may be generated in the subsurface region due to latitudinal shear / or due to the radial shear in this region.  相似文献   

17.
18.
The synthetic Voigt profile of the following transitions (v=0,v=0), (v=0,v=1), (v=1,v=1), (v=1,v=0) have been computed for different concentrations and temperatures of CO and compaed to the measured intensities of the UV sunspot spectrum by a high resolution spectrograph. From this comparison the solar minimum temperature has been determined.  相似文献   

19.
Ai-Hua  Zhou  Guang-Li  Huang  Xin-Dong  Wang 《Solar physics》1999,189(2):345-356
Two sets of accurate approximate expressions for the gyrosynchrotron radiation in the transverse propagation case are presented for the first time. They contain emissivity /BNand absorptivity B/Nfor e-mode, effective temperature T effand frequency of peak brightness p. The expressions are designed for the range 2 to 7 of electron energy spectral index and for the ranges from 2 to 10 and 10 to 100 of harmonic numbers s(=/B). Their statistical error is, respectively, ±18% and ±29% for /BNand B/Nfor 10/B100, ±128% and and ±170% for 2/B10.  相似文献   

20.
The optical depth at the head of the Lyman continuum, H, is determined at a number of positions in three hedgerow prominences using spectroheliograms (5 × 5 resolution) of C III 977, LC 896, and O IV 554 observed with the Harvard experiment on Skylab. At heights greater than 10 above the limb the maximum value of H is 30 to 50, which occurs at the central part of the prominences. For one of the prominences the determination of H is found to be consistent with data from spectroheliograms of Mg X 625. The degree of ionization of hydrogen is estimated from the intensity of LC 896 at H 1. In the central part of a model prominence N P/N HI1.9 for a reasonable range of the electron densities, where N P and N HI are the proton density and the neutral hydrogen density, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号