首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An idealised model is presented and analysed to gain more fundamental understanding about the dynamics of phytoplankton blooms in well-mixed, suspended sediment dominated estuaries. The model describes the behaviour of subtidal currents, suspended sediments, nutrients and phytoplankton in a channel geometry. The initial growth of phytoplankton and its spatial distribution is calculated by solving an eigenvalue problem. The growth rates depend on the position in the estuary due to along-estuary variations in nutrient concentration and suspended sediment concentration. The model yields an insight into how the onset of blooms in the model depends on physical and biological processes (turbulent mixing, fresh water discharge, light attenuation, imposed nutrient concentrations at the river and sea side). In particular, the model demonstrates that the joint action of spatial variations in turbidity and in nutrients causes the maximum phytoplankton concentrations to occur seaward of the estuarine turbidity maximum.  相似文献   

2.
The chemical composition of suspended particulate material (SPM) in the Tamar Estuary and its response to tidal sediment resuspension at the turbidity maximum have been investigated. The results discriminate four regions: (1) the outer estuary where spatial changes in the composition of SPM reflect the dispersal of estuarine particles modified by in situ generation of organic particles, (2) the middle estuary where the composition of SPM is mainly determined by hydrodynamic mixing although there is some evidence of in situ chemical reactivity, (3) the upper estuary where sharply distinct and temporally variable SPM compositions are centred at the turbidity maximum; these are largely the result of particle-selective accumulation, sedimentation and resuspension processes rather than of local particle-water chemical exchanges, and (4) the fluvial estuary where the SPM composition reflects the influx of riverine particles.  相似文献   

3.
In this paper, we analyse the behaviour of fine sediments in the hyper-turbid Lower Ems River, with focus on the river’s upper reaches, a stretch of about 25 km up-estuary of Terborg. Our analysis is based on long records of suspended particulate matter (SPM) from optical backscatter (OBS) measurements close to the bed at seven stations along the river, records of salinity and water level measurements at these stations, acoustic measurements on the vertical mud structure just up-estuary of Terborg and oxygen profiles in the lower 3 m of the water column close to Leerort and Terborg. Further, we use cross-sectionally averaged velocities computed with a calibrated numerical model. Distinction is made between four timescales, i.e. the semi-diurnal tidal timescale, the spring–neap tidal timescale, a timescale around an isolated peak in river flow (i.e. about 3 weeks) and a seasonal timescale. The data suggest that a pool of fluid/soft mud is present in these upper reaches, from up-estuary of Papenburg to a bit down-estuary of Terborg. Between Terborg and Gandersum, SPM values drop rapidly but remain high at a few gram per litre. The pool of fluid/soft mud is entrained/mobilized at the onset of flood, yielding SPM values of many tens gram per litre. This suspension is transported up-estuary with the flood. Around high water slack, part of the suspension settles, being remixed during ebb, while migrating down-estuary, but likely not much further than Terborg. Around low water slack, a large fraction of the sediment settles, reforming the pool of fluid mud. The rapid entrainment from the fluid mud layer after low water slack is only possible when the peak flood velocity exceeds a critical value of around 1 m/s, i.e. when the stratified water column seems to become internally supercritical. If the peak flood velocity does not reach this critical value, f.i. during neap tide, fluid mud is not entrained up to the OBS sensors. Thus, it is not classical tidal asymmetry, but the peak flood velocity itself which governs the hyper-turbid state in the Lower Ems River. The crucial role of river flow and river floods is in reducing these peak flood velocities. During elongated periods of high river flow, in e.g. wintertime, SPM concentrations reduce, and the soft mud deposits consolidate and possibly become locally armoured as well by sand washed in from the river. We have no observations that sediments are washed out of the hyper-turbid zone. Down-estuary of Terborg, where SPM values do not reach hyper-turbid conditions, the SPM dynamics are governed by classical tidal asymmetry and estuarine circulation. Hence, nowhere in the river, sediments are flushed from the upper reaches of the river into the Ems-Dollard estuary during high river flow events. However, exchange of sediment between river and estuary should occur because of tide-induced dispersion.  相似文献   

4.
Muddy sediments with their potential for containing contaminants are commonly deposited and remobilized by tidal currents in estuarine environments. We examined the mobilization and subsequent redeposition of mud in a coastal plain estuary located in the southeastern United States. Time-series data for salinity, suspended sediment concentrations and quality (percent organic matter and pigment concentrations) were obtained over a 13-hour tidal cycle. We found that fast-settling mud particles are found during the highest tidal current speeds. Particle quality analyses suggest that all the material is of similar origin, and that phaeopigment can be used as a tracer of particles in this system. These particles settle onto the bed when current speeds approach slack conditions. We speculate that the quantity of mud mobilized during neap tide is less than during spring tide resulting in an opportunity for the mud to partially consolidate on the bottom and be removed from resuspension. We further speculate that the muddy sediments are mainly derived from fringing marshes in this estuary.  相似文献   

5.
The long-term variability of the non-tidal circulation in Southampton Water, a partially mixed estuary, was investigated using 71-day acoustic Doppler current profiler (ADCP) time series. The data show evidence that the spring–neap tidal variability of the turbulent mixing modulates the strength of the non-tidal residual circulation, with subtidal neap tide surface flows reaching 0.12 m s–1 compared to <0.05 m s–1 at spring tides. The amplitude of the neap-tide events in this non-tidal circulation is shown to be related to a critical value of the tidal currents, illustrating the strong dependence on tidal mixing. The results suggest that the dominant mechanism for generating these neap-tide circulation events is the baroclinic forcing of the horizontal density gradient, rather than barotropic forcing associated with ebb-induced periodic stratification. While tidal turbulence is thought to be the dominant control on this gravitational circulation, there is evidence of the additional effect of wind-driven mixing, including the effects of wind fetch and possibly wave development with along-estuary winds being more efficient at mixing the estuary than across-estuary winds. Rapid changes in atmospheric pressure also coincided with fluctuations in the gravitational circulation. The observed subtidal flows are shown to be capable of rapidly flushing buoyant material out of the estuary and into the coastal sea at neap tides.Responsible Editor: Iris Grabemann  相似文献   

6.
Measurements are presented of the properties of suspended particulate matter (SPM) in the estuarine turbidity maximum (ETM) of the upper Humber and Ouse estuaries during transient, relatively low freshwater inflow conditions of September 1995. Very high concentrations of near-bed SPM (more than 100 g l−1) were observed in the low-salinity (less than 1), upper reaches. SPM within the ETM consisted largely of fine sediment (silt and clay) that existed as microfloc and macrofloc aggregates and individual particles. Primary sediment particles were very fine grained, and typically, about 20–30% was clay-sized at high water. The clay mineralogy was dominated by chlorite and illite. There was a pronounced increase in particle size in the tidal river, up-estuary of the ETM. The mean specific surface area (SSA) of near-bed SPM within the ETM was 22 m2 g−1 on a spring tide and 24 m2 g−1 on a neap tide. A tidal cycle of measurements within a near-bed, high concentration SPM layer during a very small neap tide gave a mean SSA of 26 m2 g−1. The percentage of silt and clay in surficial bed sediments along the main channel of the estuary varied strongly. The relatively low silt and clay percentage of surficial bed sediments (about 10–35%) within the ETM’s region of highest near-bed SPM concentrations and their low SSA values were in marked contrast to the overlying SPM. The loss on ignition (LOI) of near-bed SPM in the turbid reaches of the estuary was about 10%, compared with about 12% for surface SPM and more than 40% in the very low turbidity waters up-estuary of the ETM. Settling velocities of Humber–Ouse SPM, sampled in situ and measured using a settling column, maximized at 1.5 mm s−1 and exhibited hindered settling at higher SPM concentrations.  相似文献   

7.
The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub-sampling, was applied to evaluate the effect. The data revealed that the SPM concentration near the bed was on average more than two times higher during the dredging experiment. The disposed material was mainly transported in the benthic layer and resulted in a long-term increase of SPM concentration and formation of fluid mud layers. The study shows that SPM concentration can be used as an indicator of environmental changes if representative time series are available.  相似文献   

8.
The fate of mud in an estuary over an entire year was unravelled using complementary, independent, spatially explicit techniques. Sequential ERS-2 SAR and Envisat MERIS-FR data were used to derive synoptic changes in intertidal bottom mud and suspended particulate matter (SPM) in the top of the water column, respectively. These satellite data were combined with in situ measurements and with a high resolution three-dimensional cohesive sediment model, simulating mud transport, resuspension, settling and deposition under the influence of tides, wind, waves and freshwater discharge. The spatial distribution of both bottom mud and SPM as observed by in situ and satellite techniques was largely explained by modelled estuarine circulation, tidal and wind-induced variations in vertical mixing and horizontal advection. The three data sources also showed similar spring-neap and seasonal variations in SPM (all factor 1.5 to 2), but semi-diurnal tidal variations were underestimated by the model. Satellite data revealed that changes in intertidal bottom mud were spatially heterogeneous, but on average mud content doubled during summer, which was confirmed by in situ data. The model did not show such seasonal variation in bed sediment, suggesting that seasonal dynamics are not well explained by the physical factors presently implemented in the model, but may be largely attributed to other (internal) factors, including increased floc size in summer, temporal stabilisation of the sediment by microphytobenthos and a substantially lower roughness of the intertidal bed in summer as observed by the satellite. The effects of such factors on estuarine mud dynamics were evaluated.  相似文献   

9.
Tidal straining effect on sediment transport dynamics in the Huanghe (Yellow River) estuary was studied by field observations and numerical simulations. The measurement of salinity, suspended sediment concentration, and current velocity was conducted during a flood season in 1995 at the Huanghe river mouth with six fishing boats moored at six stations for 25-h hourly time series observations. Based on the measurements, the intra-tidal variations of sediment transport in the highly turbid river mouth was observed and the tidal straining effect occurred. Our study showed that tidal straining of longitudinal sediment concentration gradients can contribute to intra-tidal variability in sediment stratification and to asymmetries in sediment distribution within a tidal cycle. In particular, the tidal straining effect in the Huanghe River estuary strengthened the sediment-induced stratification at the flood tide, thus producing a higher bottom sediment concentration than that during the ebb. A sediment transport model that is capable of simulating sediment-induced stratification effect on the hydrodynamics in the bottom boundary layers and associated density currents was applied to an idealized estuary to demonstrate the processes and to discuss the mechanism. The model-predicted sediment processes resembled the observed characteristics in the Huanghe River estuary. We concluded that tidal straining effect is an important but poorly understood mechanism in the transport dynamics of cohesive sediments in turbid estuaries and coastal seas.  相似文献   

10.
Multi-sensor tripod measurements in the high-turbidity area of the Belgian nearshore zone (southern North Sea) allowed investigating storm effects on near bed suspended particulate matter (SPM) concentrations. The data have shown that during or after a storm the SPM concentration increases significantly and that high concentrated mud suspensions (HCMS) are formed. Under these conditions, about 3 times more mass of SPM was observed in the water column, as compared to calm weather conditions. The following different sources of fine-grained sediments, influencing the SPM concentration signal, have been investigated: wind direction and the advection of water masses; the previous history and occurrence of fluffy layers; freshly deposited mud near the disposal grounds of dredged material, navigation channels and adjacent areas; and the erosion of medium-consolidated mud of Holocene age.  相似文献   

11.
Guajará Bay, located at the right margin of the Pará River estuary (Amazon) is formed in the confluence of Guamá and Acará–Moju rivers. It has low-depth zones (∼5 m) and deep channels (∼25 m). The ebb channel is located in the west section, where there is intense erosion of the margin. The flood channels and intertidal mudflats, which stretch out from north to south along the shore of the city of Belém do Pará, are in the east section. There are sandy (northwest) and muddy sedimentary deposits (east–southeast). Some 70% of Guajará Bay's bottom is covered by mud. The depositation of such muddy sediments and the formation of a point bar in the south section (Guamá River mouth) happen due to a decrease in the intensity of tidal currents to the south and of fluvial currents to the north. However, the hydrodynamic regime is high, which is proved by the low clay amounts. The sand deposits in the northwest section indicate strong tidal currents. The vast area of the bottom that is covered by mud (∼90 km2) and the intertidal mudflats (∼150 m wide) in Guajará Bay hint the extent of the contribution and sediments flow from Guamá and Acará–Moju rivers (drainage basin total area of ∼87,400 km2) to the Pará River estuary. The regular rainfall regime, typical of the Amazon region, keeps the considerable discharges of such rivers and their high turbidity (Secchi depth ?0.5 m) in the investigation area. Generally speaking, the low topography, the great fluvial subsidy and the action of tidal currents are the main controlling elements of the depositation and dispersion of sediments in Guajará Bay.  相似文献   

12.
From 1989 to 1992, the concentration of formaldehyde was measured along the Elbe estuary as well as at anchor stations. In mesocosm experiments, the turnover of formaldehyde could be investigated avoiding the variability caused by tidal advection of different water bodies. Formaldehyde concentrations in the Elbe estuary ranged from 0.5… 180 μg/L. As sources, a release by algae and microbial processes were identified. Three areas with different dominance of formaldehyde turnover processes were found in the estuary. In the limnic part of the estuary, a release of formaldehyde by algae was dominant. In the mixohaline zone and the turbidity maximum, bacterial degradation of organic matter increased the formaldehyde concentration. In the mouth of the estuary, the adjacent Wadden sea areas influenced the concentration due to formaldehyde-rich runoff from the tidal mud flats. In the other parts of the estuary, a fast degradation of formaldehyde kept the formaldehyde concentration at a low level. In sediment cores from the Elbe and a mesocosm, the formaldehyde concentrations were in the same range as in the water column. Mesocosms with and without sediment showed no significant differences in concentration levels which were similar to those measured in the Elbe at the same time. During the investigated period, no anthropogenic impacts of formaldehyde into the Elbe estuary could be detected.  相似文献   

13.
Nephelometric turbidity, a measure of light scattering by particles suspended in water, is commonly used for indicating water clarity or suspended particulate matter (SPM) concentration. Different turbidity sensors have long been known to respond differently to the same suspensions. Design standards have been introduced to improve comparability of turbidity sensors, notably the ISO-7027 standard adopted by a number of manufacturers. We compared six ISO-7027-compliant nephelometers in river silt, kaolinite (layer clay) and algae-laden pond water, with rigorous tank experiments over a wide (100-fold) concentration range. The responses of four different field-type (in situ) and two cuvette instruments, all calibrated to the same freshly made formazin standards, were very strongly linearly correlated, but ranged about twofold in magnitude. Apparently, even sensors meeting the same design standard (ISO-7027) cannot be relied on to output numerically similar formazin nephelometric unit (FNU) values. This weak numerical comparability highlights the futility of treating turbidity as an absolute quantity, for example in environmental standards or studies of fine SPM effects on aquatic life. Indeed, reporting of turbidity in informal units such as FNU is best avoided. Turbidity records should be converted, by site-specific calibrations, to quantities of ultimate interest such as SPM concentration or total phosphorus. For performance monitoring of field nephelometers, we advocate routine site-specific calibration, not to formazin, but to the light beam attenuation coefficient (beam-c; units: m−1). Beam-c is a proper (SI) physical quantity that can be precisely measured by beam transmissometry, as in our experiments, and is accurately convertible to visual clarity.  相似文献   

14.
PCB (polychlorinated biphenyls) contamination and its relationship to SPM (suspended particulate material) have been studied in the Seine Estuary, which is heavily polluted by these persistent and hydrophobic man-made chemicals. Two sampling cruises have been performed during different freshwater discharge conditions. PCB and SPM concentrations, as well as grain-size distributions in the particulate material have been determined. Water samples have been collected at fixed positions during a tidal cycle, and along transects within the estuary.PCB concentrations vary from 2 ng 1−1 in the marine zone to 250 ng 1−1 within the estuary, and reach 1.3 × 103 ng 1−1 in the turbidity maximum zone. During a tidal cycle, low PCB concentrations are observed at high water, and are in the same range in February as in July. High PCB contamination is observed at low water, but PCB concentrations are about five times higher in February. SPM and PCB variations are well correlated in both periods of observations. Higher PCB contamination during February is explained by higher SPM inputs, mainly due to particles of riverine origin. The transport of PCB within the estuary depends on the quantity and the grainsize composition of suspended material, which varies according to freshwater discharge and tidal amplitude.  相似文献   

15.
Meteorological, hydrological, and hydrodynamic data for 3 years (2008–2010) have been used to document and explain the temporal and spatial variability of the physical–biogeochemical interactions in the Guadalquivir River Estuary. A real-time, remote monitoring network has been deployed along the course of the river between its mouth and Seville to study a broad range of temporal scales (semidiurnal, diurnal, fortnightly, and seasonal). This network consists of eight hydrological monitoring stations capable of measuring temperature, conductivity, dissolved oxygen, turbidity, and chlorophyll fluorescence at four depths. In addition, six stations have been deployed to study hydrodynamics, obtaining 20-cell water column current profiles, and there is a meteorological station at the river mouth providing data for understanding atmospheric interactions. Completing this data-gathering network, there are several moorings (tide gauges, current/wave sensors, and a thermistor chain) deployed in the estuary and river mouth. Various sources of physical forcing, such as wind, tide-associated currents, and river discharge, are responsible for the particular temporal and spatial patterns of turbidity and salinity found in the estuary. These variables force the distribution of biogeochemical variables, such as dissolved oxygen and chlorophyll fluorescence. In particular, episodes of elevated turbidity (when suspended particle matter concentration >3,000 mg/l) have been detected by the network, together with episodes of declining values of salinity and dissolved oxygen. All these patterns are related to river discharge and tidal dynamics (spring/neap and high/low tide).  相似文献   

16.
《国际泥沙研究》2016,(3):226-236
The Murucupi River belongs to the hydrographic network of the Pará River estuary, at the southern portion of the Amazon River mouth, which consists of a fluvial-marine transitional zone under strong impact of both tidal and fluvial currents. The geochemical results obtained for bottom sediments from the Murucupi River, the Arrozal Channel, and the Pará River indicate a natural variation of Pb, Cr, Cu, Zn, and Ni content among these water ways with no significant anthropogenic influence. According to the threshold effects level (TEL), the contents of trace metals do not offer risk to the local biota. By contrast, the differences in the Pb isotopic composition of sediments in the Murucupi River, the Arrozal Channel, and the Pará River are significant. These isotopic signatures indicate an anthropogenic contribution of Pb in the Murucupi River originating from the domestic effluents of urban centers; industrial waste represented by red mud is not included. These results demonstrate that the Pb isotopic signature is a prospective indicator for future contamination of bottom sediments by trace metals and is useful for identifying contaminants among the possible anthropogenic sources.  相似文献   

17.
Suspended particulate matter (SPM) fluxes and dynamics are investigated in the East Frisian Wadden Sea using a coupled modeling system based on a hydrodynamical model [the General Estuarine Transport Model (GETM)], a third-generation wave model [Simulating Waves Nearshore (SWAN)], and a SPM module attached to GETM. Sedimentological observations document that, over longer time periods, finer sediment fractions disappear from the Wadden Sea Region. In order to understand this phenomenon, a series of numerical scenarios were formulated to discriminate possible influences such as tidal currents, wind-enhanced currents, and wind-generated surface waves. Starting with a simple tidal forcing, the considered scenarios are designed to increase the realism step by step to include moderate and strong winds and waves and, finally, to encompass the full effects of one of the strongest storm surges affecting the region in the last hundred years (Storm Britta in November 2006). The results presented here indicate that moderate weather conditions with wind speeds up to 7.5 m/s and small waves lead to a net import of SPM into the East Frisian Wadden Sea. Waves play only a negligible role during these conditions. However, for stronger wind conditions with speeds above 13 m/s, wind-generated surface waves have a significant impact on SPM dynamics. Under storm conditions, the numerical results demonstrate that sediments are eroded in front of the barrier islands by enhanced wave action and are transported into the back-barrier basins by the currents. Furthermore, sediment erosion due to waves is significantly enhanced on the tidal flats. Finally, fine sediments are flushed out of the tidal basins due to the combined effect of strong erosion by wind-generated waves and a longer residence time in the water column because of their smaller settling velocities compared to coarser sediments.
Karsten A. LettmannEmail:
  相似文献   

18.
19.
In this paper a novel series of field measurements are presented, which are the first to elucidate the processes influencing siltation in Botlek Harbour. Botlek Harbour is situated at the limit of saline water intrusion in the Rotterdam Waterway. Normally, after the ebb tide fresher river waters are found in the Rotterdam Waterway at the location of Botlek Harbour. On the flooding tide, the tip of the salt wedge is advected along the Rotterdam Waterway towards the mouth of Botlek Harbour. Hence on flood, a lock-exchange mechanism operates between Botlek Harbour and the Rotterdam Waterway. On the flood tide, when there is a supply of suspended particulate matter (SPM) associated with the presence of the estuarine turbidity maximum (ETM) at the mouth of the harbour, the survey data show exchange of SPM into the harbour. This lock-exchange process is found to be the dominant cause for SPM transport into the harbour. This is further substantiated by an analysis of the mass transport mechanisms. In this analysis, the vertical profiles of the instantaneous velocity, salinity and SPM concentration fields, recorded during the surveys, were decomposed into advective and dispersive transport components. The results of this analysis indicate that the correlation between the lock-exchange mechanism on the flood tide with the availability of SPM for exchange and efficient trapping, dominate the total exchange of SPM (97%). Hence, the increase in measured near-bed SPM concentration within the harbour is ascribed to tidal advection of saline water and the ETM along the Rotterdam Waterway. Tidal advection controls the density difference between the estuary and harbour, as well as the availability of SPM for exchange at the entrance to Botlek Harbour. The location of the ETM at the tip of the salt wedge is a key factor in supplying SPM to Botlek Harbour. Consequently the timing of the availability of SPM at the mouth of the harbour needs to be considered in siltation studies. The survey data suggest that Botlek Harbour basin has a 100% trapping efficiency. Analysis of 5 months of data, from a measuring rig located within the harbour, show excursions of the limit of the salt wedge and ETM. These excursions are likely to affect siltation of upstream harbours. Salinity-induced density gradients control the transport and subsequent trapping of SPM in the estuary in close proximity to the harbour entrance, the exchange of SPM between the estuary and harbour, and the trapping of SPM in the harbour basin.  相似文献   

20.
Contemporary hydrodynamics and morphological change are examined in a shallow microtidal estuary, located on a wave-dominated coast (Port Stephens, NSW, Australia). Process-based numerical modelling is undertaken by combining modules for hydrodynamics, waves, sediment transport and bathymetry updates. Model results suggest that the complex estuarine bathymetry and geometry give rise to spatial variations in the tidal currents and a marked asymmetry between ebb and flood flows. Sediment transport paths correspond with tidal asymmetry patterns. The SE storms significantly enhance the quantities of sediment transport, while locally generated waves by the westerly strong winds also are capable of causing sediment entrainment and contribute to the delta morphological change. The wave/wind-induced currents are not uniform with flow over shoals driven in the same direction as waves/winds while a reverse flow occurring in the adjacent channel. The conceptual sediment transport model developed in this study shows flood-directed transport occurs on the flood ramp while ebb-directed net transport occurs in the tidal channels and at the estuary entrance. Accretion of the intertidal sand shoals and deepening of tidal channels, as revealed by the model, suggest that sediment-infilling becomes advanced, which may lead to an ebb-dominated estuary. It is likely that a switch from flood- to ebb-dominance occurs during the estuary evolution, and the present-day estuary acts as a sediment source rather than sediment sink to the coastal system. This is conflictive to the expectation drawn from the estuarine morphology; however, it is consistent with previous research suggesting that, in an infilling estuary, an increase in build-up of intertidal flats/shoals can eventually shift an estuary towards ebb dominance. Thus, field data are needed to validate the result presented here, and further study is required to investigate a variety of estuaries in the Australian area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号