首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary From a two-dimensional network adjustment it is well understood that the one orientation unknown of a theodolite frame is estimable, once the orientation datum parameter, e.g., one azimuth, is fixed. In three-dimensional networks the problem of estimability of three orientation unknowns inherent in a theodolite frame is more complex. Here we prove that not only the classical horizontal orientation unknown is estimable (up to the datum degrees of freedom), but also astronomical longitude and astronomical latitude which can be considered as two additional orientation unknowns of the theodolite frame moving with respect to an earth-fixed equatorial frame of reference. Thus the theodolite instrument can be considered—at least theoretically—a gradiometer measuring the variation of the directional parameters of the gravity vector from one point to another. Or up to the datum degrees of freedom astronomical longitude and astronomical latitude can be determined from only theodolite observations between exclusively terrestrial points. M?nicke (1982), has shown that despite the refraction problem the method works sufficiently well in practice.  相似文献   

2.
《测量评论》2013,45(65):131-134
Abstract

1. In geodetic work a ‘Laplace Point’ connotes a place where both longitude and azimuth have been observed astronomically. Geodetic surveys emanate from an “origin” O, whose coordinates are derived from astronomical observations: and positions of any other points embraced by the survey can be calculated on the basis of an assumed figure of reference which in practice is a spheroid formed by the revolution of an ellipse about its minor axis. The coordinates (latitude = ?, longitude = λ and azimuth = A) so computed are designated “geodetic”.  相似文献   

3.
Summary The discrepancy between precision and accuracy in astronomical determinations is usually explained in two ways: on the one hand by ostensible large refraction anomalies and on the other hand by variable instrumental errors which are systematic over a certain interval of time and which are mainly influenced by temperature.In view of the research of several other persons and the author’s own investigations, the authors are of the opinion that the large night-errors of astronomical determinations are caused by variable, systematic instrumental errors dependent on temperature. The influence of refraction anomalies is estimated to be smaller than 0″.1 for most of the field stations. The possibility of determining the anomalous refraction from the observations by the programme given by Prof. Pavlov and Anderson has also been investigated. The precision of the determination of the anomalous refraction is good as long as no other systematic error working in a similar way is present.The results, which are interpreted as an effect of the anomalous refraction by Pavlov and Sergijenko, could also be interpreted as a systematic instrumental error. It is furthermore maintained thatthe latitude and longitude of a field station can be determined in a few hours of one night if the premisses given in [3, p.68]are kept. It has been deplored that the determination of the azimuth has not been given the necessary attention. It is therefore proposed to intensify the research on this problem. The profession has been called upon to acquaint itself better with the valuable possibilities of astronomical determinations and to apply them in a useful and appropriate manner. At the same time, attention has been called to the possibility of improving astronomical determinations with regard to accuracy as well as effectiveness.  相似文献   

4.
新天文常数、系统对天文经纬度和方位角的影响   总被引:1,自引:0,他引:1  
本文从理论上讨论了新天文常数、系统对恒星视位置影响的周期性、计算公式及其数值范围,并结合一等天文外业的实际情况,推导了新天文常数、系统对天文经纬度和方位角的影响公式及其数值范围,从而得出在任何年观测都可以使其影响忽略不计等结论。  相似文献   

5.
《测量评论》2013,45(71):37-39
Abstract

DR. DE GRAAFF-HUNTER proposed two new astronomical methods in a paper which he read at the Conference of Commonwealth Survey Officers, and the writer recently had an opportunity of trying out one' of these, with some interesting results. The method used, which requires timed intersections on a pair of stars in azimuths differingby about 90° and depends upon the alg'ebraic solution of the pair of position lines so formed*, will yield latitude, longitude and azimuth. The observations are brief and uncomplicated, prior identification unnecessary",and ~4e subsequent. computation is light: and requires no more than about thirty minutes for a pair of stars, inclusive of star identification.  相似文献   

6.
《测量评论》2013,45(30):457-462
Abstract

In the original geodetic series in Southern Rhodesia—completed by Mr Alexander Simms in 1901—the geographical coordinates of all stations were referred to the point SALISBURYas origin. The coordinates of SALISBURY were fixed by interchange of telegraphic signals with the Royal Observatory at the Cape for longitude, combined with astronomical determinations of time, latitude, and azimuth (see Vol. III, “Geodetic Survey of South Africa”).  相似文献   

7.
Least-squares by observation equations is applied to the solution of geodetic boundary value problems (g.b.v.p.). The procedure is explained solving the vectorial Stokes problem in spherical and constant radius approximation. The results are Stokes and Vening-Meinesz integrals and, in addition, the respective a posteriori variance-covariances. Employing the same procedure the overdeterminedg.b.v.p. has been solved for observable functions potential, scalar gravity, astronomical latitude and longitude, gravity gradients Гxz, Гyz, and Гzz and three-dimensional geocentric positions. The solutions of a large variety of uniquely and overdeterminedg.b.v.p.'s can be obtained from it by specializing weights. Interesting is that the anomalous potential can be determined—up to a constant—from astronomical latitude and longitude in combination with either {Гxzyz} or horizontal coordinate corrections Δx and Δy, or both. Dual to the formulation in terms of observation equations the overdeterminedg.b.v.p.'s can as well be solved by condition equations. Constant radius approximation can be overcome in an iterative approach. For the Stokes problem this results in the solution of the “simple” Molodenskii problem. Finally defining an error covariance model with a Krarup-type kernel first results were obtained for a posteriori variance-covariance and reliability analysis.  相似文献   

8.
This study introduces the new results of a novel low-cost digital zenith camera system operated in Turkey that uses astronomical and geodetic instrumentation. Currently, it is possible to determine deflections of the vertical (DoV) components by using a vast amount of information gathered from geo-referenced star images, tilt measurements, and Global Navigation Satellite System technology. This new design of an astro-geodetic camera system is used for calculating DoV components with 12 independent solutions on a test station in Istanbul, and additional observations were performed to investigate the external accuracy of the system on a test network. A specific leveling method is developed to align system toward the zenithal direction. The final results of the observations on a test station located in Istanbul indicate that the accuracy of the system is about ±0.19 arc-seconds in latitude and ±0.28 arc-seconds in longitude determination. The system has been further tested on a network with 4 control points that have averagely 20?km baselines. At the test network, the root mean square of the average value of the vertical deflections is calculated as ±0.36 arc-seconds. Furthermore, DoV components are compared with the values that are calculated using global geopotential models.  相似文献   

9.
A new reduction method usingx, y, z-coordinates is derived for astrolabe observations. By this method, the latitude and the longitude of the station are computed without the need of a priori knowledge of the station position. This method is a significant development in data reduction of astrolabe and other almucantar observations due to its mathematical exactness, simplicity, and the ease of handling the associated statistics.  相似文献   

10.
《测量评论》2013,45(82):177-184
Abstract

A method of applying azimuth control to a survey is given in which the precision with which the astronomical position must be determined is proportional to tan (altitude) instead of tan (latitude) as in the orthodox method. By using the method with stars of low altitude the observational difficulties are greatly reduced, especially in high latitudes. Methods of observation and reduction are discussed which make it possible to avoid altogether special observations to determine the astronomical position.  相似文献   

11.
Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.  相似文献   

12.
Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.  相似文献   

13.
刘彩璋  张金通 《测绘学报》1993,22(4):295-298
本文介绍了短波时号异常现象的存在,短波异常时号产生的机理、特性及规律,及其导致短波传递时延增大的幅度。从而分析了短波时号异常对高精度天文经度测定的影响,在相应的观测实施中,收录无线电时号应采取的有效措施。  相似文献   

14.
Summary This paper endeavours to evolve a method of simultaneous determination of astronomic latitude, azimuth and longitude from observations of a star-pair near their times of east and west elongations and a south star near its time of meridian transit. The star-pair of observation being within a short distance of elongation, either east or west, their motion in azimuth then is extremely slow and the small error in time has therefore insignificant effect on their azimuth, and in addition, the south star with its azimuth known from observations of the previous star-pair, being very fast-moving, the method is especially suitable for determining the astronomic latitude, azimuth and longitude by observing only the time and horizontal angees between them, and also a reference mark for ensuring the orientation of the horizontal circle side by side.  相似文献   

15.
巩岩  党亚民 《测绘科学》2012,37(3):129-131,98
本文在研究了目前存在方法的基础上,将数理统计中的方差分析周期叠加外推法应用于电离层短期预报,并对其作了改进。采用IGS提供的电离层TEC数据作为原始数据比较了该方法改进前后的预报精度,分别利用中国区域内不同地理位置的40天的数据进行分析预报,预报结果显示改进后的方法预报精度可达到1.1TECU左右,优于改进前。改进后的预报效果依然与经纬度有关,在中国区域内随着纬度的减小、经度的增加,预报精度会降低。通过与目前常用方法比较分析,该方法预报结果精度较高、所需计算参数少、简单易行,可以较好地应用于电离层短期预报。  相似文献   

16.
针对项目平台系统开发中遇到的批量POI(PointofInterest)数据与平台地图进行匹配的问题进行分析与研究.通过地理编码对经纬度进行搜索,并建立经纬度与Lambert投影变换的数据模型。运用C#语言进行实现验证,并完成批处理经纬度搜索与投影变换的功能。最终将覆盖全国范围内所有POI坐标数据与平台地图成功匹配,满足了项目的需求,也使平台开发的功能得以进一步加强,为平台支持多分辨率、多尺度、多投影的全球空间数据提供了技术积累。  相似文献   

17.
通过对不同长度GNSS导线实测数据的处理比较,分析了GNSS基线走向变化对点位精度的影响。结果表明,GNSS支导线中各控制点在经度、纬度和高程方向的误差累积与基线走向有关,并随点位经纬度的变化呈现一定的规律。   相似文献   

18.
在利用数字天顶摄像仪通过天文测量确定天文垂线偏差的工作中,要求对CCD数字图像中星象中心进行亚像素定位。本文利用MATLAB实现对FITS格式CCD天文图像的正常读取,并与FV读取结果比较分析。在已有亚像素定位的修正矩方法基础上,提出一种利用迭代法寻求合适门限对二维修正矩方法进行改善。利用MATLAB实现对实测图像数据的处理与分析,探讨门限的取值对不同星等恒星定位精度的影响,给出门限的最佳取值。通过与已有修正矩算法处理结果比较分析,在以往修正矩方法计算基础上改进计算区域后再用迭代法计算,暗星定位精度有了很大提高。  相似文献   

19.
Summary Carrier phase measurements are potentially the most precise observations available from theGPS satellite system, the formal precision being of the order of one centimeter per observation. If the so called double differences are used as the basic observable, the analysis is relatively simple, since satellite- and receiver-clocks may be represented by basic models. We investigate the feasibility of double difference phase observations for orbit determination using the material of the 1985 High Precision Baseline Test, where the coordinates of the so called fiducial points (Haystack, Ft. Davis Richmond and Mojave) are held fixed.TI-4100 andAFGL-receiver observations were used in the same orbit determination process. Although no surface weather data had been available to us, the orbit quality seems to be of the order of0.1 ppm. When we use these orbits to estimate the coordinates of the five “non-fiducial points” Owens Valley, Hat Creek Mammoth Lake, Austin and Dahlgren we get a repeatability of the order of5 cm for latitude and longitude and10 cm for height, if the observations of the first four days of the campaign are compared to those of the second four days. If we use our orbits estimated withTI andAFGL observations to process the Mojave—Owens Valley baseline (length245 km) measured by the twoSERIES-X receivers, we obtain day to day repeatabilities of1.6 cm (0.06 ppm) in length,2 cm (0.08 ppm) in latitude,4 cm (0.16 ppm) in longitude and7 cm (0.29 ppm) in height. Since there are indications that regional networks will be realized in the near future, the results presented here should encourage the realization of regional high precision orbit determination services.  相似文献   

20.
A small area of a mirror can be made vertical with a high degree of accuracy by using a free mercury surface and an autocollimation target made of a mirror. The direction of the horizontal axis of a theodolite can be established, made and kept perpendicular to the vertical mirror for all telescope altitudes and the direction of the line of sight can be made, perpendicular to the horizontal axis with the same high degree of accuracy. Observations can thus be made on any part of a chosen celestial vertical circle much more accurately than by using the best striding levels. This application is potentially useful in determination of: astronomical longitude; changes in longitude differences with time, or the possible East-West component of continental drift; right ascension differences between stars; and the rotation rate of the Earth. Other applications include a leveling instrument of a new type, checking of tubular spirit levels, monitoring tidal variations in the direction of the plumb line, establishing an accurate 90° angle, and checking the graduations of the horizontal and vertical circles of theodolites. The impersonal micrometer for special astronomical observations stops the star image. Only parallel rays will enter the telescope when the observer is tracking the star keeping the star image stationary at the center of cross hairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号