首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 166 毫秒
1.
Fifty-seven shallow groundwater samples were collected from Guiyang karst basin, China, to analyze the aqueous rare-earth elements in low-water seasons and it is shown that the total amount of rare-earth elements (ΣREE) in karst groundwater is exceedingly low compared with that in carbonate rocks or weathering crusts of carbonate rocks, and ranges from 0.01 to 0.43, from 0.03 to 0.27, from 0.03 to 0.19 and from 0.05 to 1.38 μg·L-1 for dolomite, dolomitic & limestone, limestone and clastic rock aquifer, respectively. Both distributions and contents of rare-earth elements (REE) in karst groundwater reflect the lithology of host rocks or weathering crusts of carbonate rocks through which groundwater flows. The chondrite-normalized patterns show a non-flat profile with higher enrichment of slightly light rare-earth elements (LREE) than heavy rare-earth elements (HREE), prominent fractionation between LREE and HREE, negative Ce anomalies and negative or positive Eu anomalies. There is more obvious fractionation between LREE and HREE in groundwater than that in carbonate rocks and their weathering crusts due to high contents of HCO3? and PH in groundwater. In shallow karst groundwater, REE(CO3)n2n-3 (n=1 and 2) is the main inorganic species of REE. But for a clastic rock aquifer, both REESO4+ and REECO3+ are the main inorganic species of REE. Species of REE in groundwater is closely associated with the hydrochemical type of groundwater which is predominated by the lithology of host rocks, groundwater-rock interaction and weathering-pedogenesis of carbonate rocks.  相似文献   

2.
The characteristic structures of the Precambrian cherts from the Gusui section, Guangdong ,Chi-na, include bedded structure ,laminated structure ,massive structure and pseudobrecciated structure.The chert is characterized by consistently low abundance of TiO2,Al2O3 and most trace elements.Howevver ,it is enriched in Ba,As,Sb,Hg and Se.In Al-Fe-Mn ternary diagrams,it falls into the “hydrothermal field“ .Correspondence analysis and factor analysis show that many elements show up in the factor that represents the leaching of country rocks by hydrothermal solutions,and are the very characteristic element association fo the geochemically anomalous South China basement.Petrologic and geochemical evidence suggests a hydrothermal origin for the chert.The chert may have been formed in a Precambrian fift or an extension zone developed within the Yunkai marginal geosyncline, with a fault system linking it to an unknown heat source at depth.  相似文献   

3.
REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demonstrated that the high-field-strength (HFS) elements Zr, Hf, Th and Nb were immobile while other trace elements were mobile during the formation of skarns and related deposits. REE and ore-forming elements such as Cu and Ag in hydrothermally-altered marbles and skarns were provided primarily by hydrothermal fluids. In the direction transverse of the strata, the more deeply the marbles were altered, the higher the total REE abundance and the larger the negative Eu anomalies would be. The chondrite-normalized REE patterns of skarns are similar to those of the marbles, but the former are distinguished by much higher REE contents and more remarkable negative Eu anomalies. Those patterns were apparently not inherited from the marble protolith, but were controlled by garnets, which were determine  相似文献   

4.
The Longbohe Cu deposit, which is located in the southern part of the Honghe ore-forming zone, Yunnan Province, China, belongs to a typical ore field where volcanic rocks are of wide distribution and are associated with Cu mineralization in time and space. The volcanic rocks in the ore field, which have experienced varying degree of alteration or regional metamorphism, can be divided into three types, i.e., meta-andesite, meta-subvolcanic rock and meta-basic volcanic rock in accordance with their mineral assemblages. These three types of volcanic rocks in the ore field are relatively rich in Na and the main samples plot in the area of alkali basalts in the geochemical classification diagram. With the exception of very few elements, these three types of volcanic rocks are similar in the content of trace elements. In comparison to the basalts of different tectonic settings, the meta-volcanic rocks in the ore field are rich in high field strength elements (HFSE) such as Th, Nb, etc. and depleted in large ion lithophile elements (LILE) such as Sr, Ba, etc. and their primary mantle-normalized trace element patterns show remarkable negative Th and Nb anomalies and negative Sr and Ba anomalies. These three types of volcanic rocks are similar in REE content range and chondrite-normalized REE patterns with the exception of Eu anomaly. Various lines of evidence show that these three types of volcanic rocks in the ore field have the same source but are the products of different stages of magmatic evolution, their original magma is a product of partial melting of the metasomatically enriched mantle in the tensional tectonic setting within the continent plate, and the crystallization differentiation plays an important role in the process of magmatic evolution.  相似文献   

5.
From the petrological study of ore-hosting focks which contain large anorthits crystals and the occurrence and chemical composition of anorthites and related minerals,the authors consider that the large anorthite crystals are of authigenic origin. The distribution characteristics of anorthites,i.e.,they are distributed along the bedding and structurally weak zones but not restricted to synsedimentary slump structures,and the relationship for some elements between anorthites and other minerals indicate that anorthites have resulted from reaction of circulating alkaline solutions rich in Al and Si with carbonated during the Indosinian orogeny.The results of this work suggest that the association of authigenic anorthites with bedded orebodies in the Dachang ore field may be the evidence that the mineralization is related to circulating underground hot waters.  相似文献   

6.
The behaviour of the rare-earth elements(REE)during the weathering of granites was studied in southern Guangxi,China.Based on the study of the weathering profiles,the soil,weathered and sub-weatereb zones are identified with different REE geochemical behaviours throug the weathering profiles of granite.The Ce anomalies of the weathering profiles cover a large range of values with most falling between 1.02 and 1.43in the soil zone and 0.16and 0.40in the weathered and sub-weathered zones.Light rare-earth elements(LREE) and heavy rare-earth elements(HREE)are enriched to varying degree in the weathering profiles as compared to host granites.In the soil zone,more HREEs are leached than LREEs,and HREEs are more enriched than LREE in the weathered and sub-weathered zones.It is considered that infiltration and adsorption on clays are two processes controlling the enrichment and formation of REE deposits in the weathering profiles of granite.  相似文献   

7.
陕西洛川黄土剖面中的稀土元素   总被引:4,自引:0,他引:4  
The ∑REE in Ioesses of different ages in the Luochuan section shows a narrow range of variation, indicating the homogeneity of materials in chemical composition. The REE in loess are concentrated mainly in silt.sized detrital minerals. Loesses of different ages and paleosols all are relatively enriched in rare-earth elements of the Ce family, and show similar REE distribution patterns. The fractinnatlon among various REEs in the loess is different from that in morainic, marine and lacustrine sediments,but is similar to that in sand samples from deserts in Northwest China. The ratios of Ce/Ce^* and Eu/Eu^* reflect that the provenance of loessic materials and their accumulating area are all in an oxidation environment with weakly basic mediums under arid or sub-arid climate.  相似文献   

8.
Uranium-bearing hydrothermal solutions during the stage of ore deposition are weakly alkaline and of the Ca^2 -Na^ /HCO3^- -F^- type.UO2(CO3)2^2- and UO2F4^-, are dominant in the hydrothermal solutions with respect to their activity.Wall-rock hydrothermal alterations ,temperature and pressure drop and the reducing capability of rock assemblage (Δeh) led to a decrease in Eh of the hydrothermal solutions and an increase in Eh at which uranium began precipitating.Therefore,the mechanism of uranium precipitation is essentially the reduction of uranium complexes.The granite-type uranium deposits are the most important type of uranium resources in China.Discussions will be made in this paper concerning the hydrothermal speciation and precipitation mech-anisms of uranium complexes in the light of fluid inclusion and geological data from some major de-posits of this type in South China.  相似文献   

9.
Distributions of the rare-earth elements (REE) in omphacite and garnet and REE behaviors during metamorphic processes were discussed. The REE concentrations of garnet and omphacite in six eclogite samples from the Dabie Mountain, central China, were measured by inductively coupled plasma-mass spectrometry (ICP-MS). The correlation of δEu ratios between garnet and omphacite indicated that chemical equilibrium of REE distribution between garnet and omphacite could be achieved during ultra-high pressure (UHP) metamorphism. Most of the partition coefficients (Kd=CiOmp/CiGrt) of light rare-earth elements (LREE) are higher than 1. However the partition coefficients of heavy rare-earth elements (HREE) are lower than 1. This indicated that the LREE inclined to occupy site M2 in omphacite, but the HREEs tended to occupy eightfold coordinated site in garnet during the eclogite formation. The REE geochemistry of the eclogites indicated that LREE could be partially lost during the prograde metamorphic process of protolith, but be introduced into the rocks during the symplectite formation. LREE are more active than HREE during the UHP metamorphism. The results are favorable to highlighting the REE behavior and evolution of UHP metamorphic rocks.  相似文献   

10.
Statistical data on major,trace and rare-earth elements in wolframite from the quartz vein-and greisen-type tin deposits in the Dupangling orefield reveal(1)The components in wolframite can be divided into two relatively independent groups:the WO3-Nb-Ta-Sc-REE group,in which WO3 is negatively correlated with the others and the FeO-MnO-Sn group,in which MnO is negatively corre-lated with the other two;(2)In general ,REE fractionation is not significant,reflected mainly by the separation of Eu from other REE‘s.LREE and HREE increase or decrease simultaneously ,with HREE being more variable;(3)Nb,Ta,Sc,REE substitute for W, and Sn may enter into wolframite lattice accompanied by Fe-Mn substitution;(4)In contrast to wolframite in quartz veins,which is poor in REE,Nb,Ta and has high δEu values and LREE/HREE and Nb/Ta ratios,wolframite in greisen is rich in REE, Nb,Ta,Sc and has low δEu values and LREE/HREE and Nb/Ta ratios ;and (5)The contents and ratios of trace elements and REE parti-tioning parameters of wolframite can be used as guide for prospecting.  相似文献   

11.
与碱性岩有关的碳酸岩型内生稀土矿床在中国乃至世界上轻稀土资源储量中占有极为重要的地位,诸如我国内蒙古的白云鄂博稀土矿床、川西冕宁—德昌稀土成矿带中的牦牛坪、大陆槽等稀土矿床、山东微山县郗山稀土矿床以及美国的Mountain Pass稀土矿床等都属于这种类型的稀土矿床.当前,对于这类稀土矿床的成矿流体演化机制,学界主要存...  相似文献   

12.
In this paper, some experimental studies on the modes of occurrence and the conditions of transport and precipitation of rare-earth elements (REE) in sea water have been made. The results show that the ions of REE and carbonate radicles can be combined into quite stable and soluble complexes in the medium of weak alkalinity. REE precipitation may result from the dissociation of REE complexes during the evolution of solutions from weakly alkaline to neutral or slightly acidic and in the presence of precipitants for REE, such as P, Ba, Ca, and Mg. That is why REE can be concentrated in carbonate formations. Experimental results also show that REE will be precipitated in the form of phosphate or F-carbonate in the presence of [PO4]3? and F? in the solution. Our experimental results are consistent with the geological characteristics of some REE deposits.  相似文献   

13.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

14.
The data on the distribution of elements in the Pb–Zn cross-section of the Gatsirovskaya vein (the Upper Zgid deposit, North Ossetia, Russia) have shown that the spectra of rare-earth elements (REEs) changed significantly in the ore samples during the vein formation. The sharp growth of the LaN/YbN, LaN/NdN, GdN/HoN, and GdN/YbN ratios is confined to the vein intervals, where the maximum amount of ore components is deposited. The comparison of the REE spectra of ores to the characteristics of the spectra of the rocks surrounding the vein and the host rocks suggests that the vein material deposited from the solutions in which the REE ratio changed with time. REE fractionation occurred due to the mobilization of components by hydrothermal solutions during their interaction with the Paleozoic host granites.  相似文献   

15.
The Late Proterozoic bedded chert from Gusui in Guangdong Province, southern China, is characterized by bedded, laminated, massive and pseudobrecciated structures. The chert is depleted in TiO2, Al2O3 and most trace elements. However, it is enriched in Ba, As, Sb, Hg, and Se. In Al-Fe-Mn ternary diagrams, it falls into the ‘hydrothermal field’. Factor analysis shows that many elements show up in the principal trace element factor suggesting their enrichment results from leaching of the country rock by hydrothermal solutions. The chert has low REE concentrations and displays an REE pattern consistent with a hydrothermal origin. It may have formed in a Late Proterozoic rift or extension zone developed within the Yunkai continental margin back-arc basin, with a fault system linking it to an unknown heat source at depth.  相似文献   

16.
The Upper Permian Xuanwei Formation widely occurs in western Guizhou, unconformably overlying the Emeishan basalts, and mainly consists of black shales. It is ∼170 m thick at Cuyudong Village, Weining County, West Guizhou, China, where the samples of black shale and sandy shale were collected and analyzed. The shales mainly contain SiO2, 18.9%–44.1%, Al2O3, 14.8%–52.8%, Fe2O3, 1.0%–41.2%, LOI, 3.2%–21.1%, TiO2, 1.0%–6.7%, and MgO, 0.2%–2.5%. The contents of all other major elements are lower than 1.0%. It is shown that the black shales have higher contents of Fe2O3 and LOI than normal shales. The siderites occurred in the black shales with higher contents of Fe2O3, which may be attributed to hydrothermal activities on seafloor. All analyzed shale samples have extremely high Ga, 47.8×10−6–109.9×10−6 (70.5×10−6 on average), higher than the industrial mining standard of Ga Resource Industry Standard. The total contents of rare-earth elements (REE) of 9 black shale samples vary from 213×10−6 to 1460×10−6, suggesting that these black shales are enriched in REE. The shale-normalized REE patterns display both positive and negative Ce anomalies (Ce/Ce* from 0.5 to 1.7), revealing that the Xuanwei shales were precipitated under oxic and anoxic conditions. The Rb-Sr chronological diagram of 6 shale samples in the Xuanwei Formation shows an age of 255±12 Ma. Strontium isotopic ratios (87Sr/86Sr)t0 range from 0.70635 to 0.70711, suggesting that these Xuanwei black shales might be derived from chemical weathering of the Emeishan basalts.  相似文献   

17.
Precisional analyses of the abundances of La, Ce, and major elements in thermal waters and rocks of the Uzon-Geyzernaya volcanotectonic depression, supplemented by published data on a number of modern high-temperature hydrothermal systems of Kamchatka and two other areas of the world, allowed defining genetically important patterns of rare-earth elements (REE) distribution. The La and Ce abundances positively correlate with silica contents both in fresh igneous rocks of the study areas and in the products formed by hydrothermal processes.All studied hydrothermal clays are enriched in La and Ce. The general enrichment trend is similar to the pattern of positive correlation between the La and Ce abundances. Geothermal waters display a strong relationship between REE enrichment and pH. Enhanced REE enrichment trend is observed in thermal waters with abundant SO42 ? and K. The REE versus Cl and B diagrams show two individual fields reflecting the level of acidity-alkalinity of thermal waters. These data demonstrate that La and Ce concentrations in the products of modern hydrothermal systems (in fluids and secondary mineral phases) are governed by wallrock composition, anionic water composition, and pH/Eh-dependent adsorption processes.  相似文献   

18.
The solubility of REE(III) fluoride solids was determined in fluoride- and chloride-bearing solutions at 150, 200 and 250 °C and saturated water vapor pressure. These experimental data, together with experimental data from previously published studies, were used to evaluate formation constants for chloride- and fluoride-bearing aqueous species of the entire REE(III) group at temperatures up to 300 °C. The data show that the stability of these species differs significantly from that predicted theoretically. For example, contrary to the theoretical predictions, LREEF2+ species are more stable than HREEF2+ species at elevated temperature. The behavior of the chloride-bearing species is similar. Parameters for the Helgeson–Kirkham–Flowers (HKF) equation of state were determined for REEF2+, REECl2+ and REECl2+ complexes using these experimental data and permit calculation of formation constants of these species at conditions not investigated experimentally. These data now permit the mobility of all REE in fluoride- and chloride-bearing hydrothermal systems to be reliably evaluated at intermediate temperatures and pressures.  相似文献   

19.
A large variety of barites collected from marine and continental environments was analyzed by neutron activation for the rare-earth elements (REE) La, Ce, Sm, Eu and Dy. Relative to chondrites, all barites show a decrease of the lighter REE from La toward Eu. The abundance and distribution of rare earths in barites show a distinction of barite types. Deep-sea barites have large REE concentrations as do other authigenic deep-sea minerals and display the chondrite normalized Eu minimum, but not the negative Ce anomaly, of sea water. Other barites, mostly on land, some hydrothermal, and others of shallow marine origin, display lower total Ree concentrations. Chondrite normalized positive Eu anomalies are displayed by those varieties of reducing sedimentary and metamorphic origin.Distribution of REE in barite can be attributed both to crystallographic constraints of substitution, and to solution complexing of REE in the precipitating medium. Plots of rare earth partitioning versus effective ion size suggest that the decreasing enrichment toward Eu for all barite types is caused by crystallographic constraints due to contraction of the substituting REE ion sizes relative to the size of the host Ba ion. Solution effects on REE substitution in barite can be evaluated by writing solid solution distribution equations based on mass action of REE and Ba sulfates and the lanthanide (Ln) solution species Ln (CO3)?54), LnSO+4, LnCl+2 and LnF+2. Under normal sea water conditions, solution complexing plays a minor role. However, increased alkalinities of reducing sediments and increased brine chlorinities could cause significant complexing and deplete REE heavier than Eu. Besides Dy in barites, this could be true for aqueous precipitation of REE in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号