首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have carried out a program of continuous Interplanetary Scintillation (IPS) monitoring of the interplanetary activity using Ooty Radio Telescope (ORT). From May 1990 to March 1991, during the 22nd, solar maximum, a few radio sources were monitored to provide long stretches of IPS data with a high-time resolution of few minutes. These observations covered 0.3 to 0.8 AU region (12° to 70° elongations) around the sun at several heliographic latitudes. During the observation, we detected 33 short-time scale IPS events which had significant variation in the scintillation index and solar wind velocity. These were considered to be due to travelling interplanetary disturbances.A multi-component model of plasma density enhancement was developed to estimate the geometry and physical properties of these IPS events. Detailed analysis of 20 of these events suggests, 1. fast IPS events were interplanetary signatures of Coronal Mass Ejections (CMEs), 2. the average mass and energy of these events was 1016 gm and 1033 erg respectively,3. 80% of IPS events were associated with X-ray flares on the sun and 50% were associated with geomagnetic activity at earth. Detailed study of the multicomponent model suggests IPS observations at smaller elongations (hence at higher radio frequencies) are more suited to detect fast-moving interplanetary disturbances such as produced by CMEs.  相似文献   

2.
Prominences, in contrast to other solar activity features, may appear at all heliographic latitudes. The position of zones where prominences are mainly concentrated depends on the cycle phase of solar activity. It is shown, for prominence observations made at Lomnický tít over the period 1967–1996, how the position of prominence zones changes over a solar cycle, and how these zones could be connected with other solar activity features. Our results obtained could be an additional source to do a better prediction of solar activity. Time-latitudinal distribution is also shown for the green corona (Fexiv, 530.3 nm). Distribution of the green coronal maxima shows that there are equator-migrating zones in the solar corona that migrate from latitudes of 45° (starting approximately 2–3 years after the cycle start) to higher latitudes 70°, and then turn (around the cycle maximum) towards the equator, reaching the equator in the next minimum (this duration lasts 18–19 years). Polar branches separate from these zones at the cycle minimum (2–3 years before above-mentioned zones) at latitudes of 50°, reaching the poles at the maximum of the present cycle. The picture becomes dim when more polar prominence zones are observed. Prominences show both the poleward and equatorward migration. Comparison between both solar activity features is also discussed.  相似文献   

3.
Gradual rise-and-fall (GRF) microwave bursts and long duration soft X-ray events (LDEs) are generally accompanied by solar coronal mass ejections (CMEs). We use reports from the Ottawa and Penticton stations to examine the annual variations from 1965 to 1985 of 10.7 cm GRF bursts with total durations of at least 4 hr. The annual numbers of such bursts are well correlated with the quiet-Sun 10.7 cm flux densities. This result is in contrast with the finding of Koomen et al. (1985) that the annual numbers of 4 hr GOES soft X-ray events are not well correlated with sunspot numbers. We show that the latter result is biased by the large variation of the quiet-Sun X-ray background throughout the solar cycle. Four-hour events are more easily detected in X-ray data than in 10.7 cm data at solar minimum, but, conversely, these events are much more easily detected in 10.7 cm data around solar maximum. About 70% of the most energetic CMEs are associated with 4 hr X-ray or 10.7 cm bursts. A one-to-one relationship does not exist between CMEs and either LDEs or GRF bursts viewed in full-Sun detectors.  相似文献   

4.
The solar flares, the speeds of shocks propagated in the solar-terrestrial space and driven by coronal mass ejections (CMEs), the heliographic longitudes and Carrington longitudes of source regions, and the geomagnetic storms, which are accompanied by the super solar proton events with a peak ?ux equal to or exceeding 10 000 pfu, have been studied by using the data of ground-based and space observations. The results show that the heliographic longitudes of source regions of super solar proton events distributed in the range from E30? to W75°. The Carrington longitudes of source regions of super solar proton events distributed in the two longitudinal belts, 130°∼220° and 260°∼320°, respectively. All super solar proton events were accompanied by major solar flares and fast CMEs. The averaged speeds of shocks propagated from the sun to the Earth were greater than 1 200 km/s. Eight super solar proton events were followed by major geomagnetic storms (Dst≤−100 nT), except that one super solar proton event was followed by a geomagnetic storm with the geomagnetic activity index Dst=−96 nT, a little smaller than that of major geomagnetic storms.  相似文献   

5.
Two solar cycle observational material (1947–1968) from several corona stations brought to one intensity scale have been used to study the longitudinal distribution of the green corona activity. The active longitudes rotating with a period of 28 days are visualized. There is only very small dependence of the rotational period on the heliographic latitude. This fact recalls the known theory of the underphotospheric rigid body rotation.  相似文献   

6.
We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120°. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤?20°) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.  相似文献   

7.
An explanation for the solar differential rotation is proposed that makes use of angular momentum transfer in the solar wind and corona. Evidence suggests that for most of the solar cycle, the solar wind is connected by magnetic field lines to high heliographic latitudes on the Sun.Thus the angular momentum lost to the solar wind would present a preferential drag to the photospheric material at high heliographic latitudes. It is shown that this drag is sufficient to offset the restoring forces of the Sun's subsurface magnetic field. In fact, the subsurface magnetic field and differential rotation are thought to grow until the stresses are sufficient to balance the torque induced by the solar wind. The present level of differential rotation and solar activity may be maintained by an intricate feedback mechanism involving the whole solar activity cycle.A power calculation based upon this model suggests the Sun's core rotates with a period of between 0.5 and 5 days. Furthermore, this view requires a major change in present theory of solar magnetic field generation.  相似文献   

8.
Logachev  Yu.I.  Kecskeméty  K.  Zeldovich  M.A. 《Solar physics》2002,208(1):141-166
The energy spectra of protons at energies in the range of about 1–100 MeV are investigated during time periods of low solar activity using data sets from near Earth spacecraft. These populations pose a tough experimental and theoretical problem that remains unsolved up to now. We attempt to provide a consistent definition of low-flux quiet-time periods relevant to low solar activity as well as quasi-stationary periods useful at higher levels of solar activity. Using statistical methods, the possible instrumental contribution to the lowest observed proton fluxes for various detectors is estimated. We suggest and prove that there exists a low-flux population of charged particles in the energy range of about 1–10 MeV, which is present in the inner heliosphere even during the quietest conditions at lowest solar activity. The dynamics of the variations of proton spectra over the solar cycle is investigated. A series of low-flux periods is examined in detail and energy spectra of protons are approximated in the form of J(E)=AE +CE. By determining the best fitting parameters to the energy spectra correlations are made among them as well as with monthly sunspot numbers characterizing solar activity. It has been demonstrated that the value of the energy minimum of proton spectrum E min that `divides' the two populations – `solar/heliospheric' and `galactic' – is shifted towards higher values with increasing solar activity. Protons have been argued to be predominantly of solar origin up to several MeV near the solar cycle minimum and up to 20–30 MeV at maximum. The slope of the lower spectrum branch (parameter ) slightly decreases with increasing solar activity. The minimum fluxes observed during the last 3 minima of solar activity are compared; the lowest fluxes were those during the 1985–1987 period.  相似文献   

9.
We examined solar energetic proton (SEP) events associated with intense H flares. We located these flares on the solar disk and obtained their distribution in heliographic longitude as well as their angular distance distribution with respect to the neutral lines corresponding to the heliospheric current sheet at 2.5R. We found that the SEP-associated H flares tend to occur in active regions at the feet of those helmet streamers which form the heliomagnetic equator and are related to coronal mass ejections (CMEs) and CME shocks. We discuss the possible role of flares, CMEs and CME shocks in generating SEPs.  相似文献   

10.
R. P. Kane 《Solar physics》2006,233(1):107-115
This paper examines the variations of coronal mass ejections (CMEs) and interplanetary CMEs (ICMEs) during solar cycle 23 and compares these with those of several other indices. During cycle 23, solar and interplanetary parameters had an increase from 1996 (sunspot minimum) to ∼2000, but the interval 1998–2002 had short-term fluctuations. Sunspot numbers had peaks in 1998, 1999, 2000 (largest), 2001 (second largest), and 2002. Other solar indices had matching peaks, but the peak in 2000 was larger than the peak in 2001 only for a few indices, and smaller or equal for other solar indices. The solar open magnetic flux had very different characteristics for different solar latitudes. The high solar latitudes (45–90) in both N and S hemispheres had flux evolutions anti-parallel to sunspot activity. Fluxes in low solar latitudes (0–45) evolved roughly parallel to sunspot activity, but the finer structures (peaks etc. during sunspot maximum years) did not match with sunspot peaks. Also, the low latitude fluxes had considerable N–S asymmetry. For CMEs and ICMEs, there were increases similar to sunspots during 1996–2000, and during 2000–2002, there was good matching of peaks. But the peaks in 2000 and 2001 for CMEs and ICMEs had similar sizes, in contrast to the 2000 peak being greater than the 2001 peak for sunspots. Whereas ICMEs started decreasing from 2001 onwards, CMEs continued to remain high in 2002, probably due to extra contribution from high-latitude prominences, which had no equivalent interplanetary ICMEs or shocks. Cosmic ray intensity had features matching with those of sunspots during 2000–2001, with the 2000 peak (on a reverse scale, actually a cosmic ray decrease or trough) larger than the 2001 peak. However, cosmic ray decreases started with a delay and ended with a delay with respect to sunspot activity.  相似文献   

11.
Major Hα solar-flare events of high optical importance have been employed to study their heliographic distribution in longitude around the Sun for the period of 2001 to 2006. A statistical analysis was performed to obtain their relationship with halo/partial-halo CMEs and Forbush decreases (Fds) of cosmic-ray intensity. Our analysis indicates that 63% of the solar flares associated with halo CMEs and Fds occur in the western hemisphere and of 37% of such flares occur in the eastern hemisphere. Similarly, we found that nearly 60% of the solar flares associated with partial- halo CMEs and Fds occur in the western hemisphere and the rest (40%) occur in the eastern hemisphere. Finally, we conclude that the flares in association with CMEs and located in the western hemisphere of the solar disk are more effective in producing Fds. The magnitudes of Fds are observed to be higher when in association of halo CMEs. A slight excess in the eastern hemisphere is found for both the halo and partial-halo CMEs.  相似文献   

12.
Koomen  M. J.  Howard  R. A.  Michels  D. J. 《Solar physics》1998,180(1-2):247-263
The Naval Research Laboratory (NRL) Solwind coronagraph recorded the outer corona at elongations 2_5 R to 10 R during the 6 1/2-year interval from March 1979, before solar maximum, to the beginning of solar minimum in September 1985. During the minimum period, when the solar magnetic field was dipole-like, the observed corona consisted of the equatorial streamer belt that is characteristic of solar minimum, and that is interpreted as an edgewise view of a nearly flat current sheet or coronal disk lying near the plane of the heliographic equator. The observed disk was a radial projection from the magnetic neutral line that was computed for the 2.5 R source surface surrounding the Sun. At earlier times, shortly after solar maximum, the observed corona often consisted of a single coronal disk similar to that at solar minimum, but strongly tilted to the heliographic equator. Again this disk projected from a tilted magnetic neutral line that was computed for the 2.5 R source surface. Solar rotation allowed this coronal disk to be viewed in all aspects. In the edgewise view it appeared as a tilted streamer belt. In the broadside view the more flower-like pattern of solar maximum was observed. The latter view was interpreted as a non-uniform distribution of coronal material in the thin coronal disk. There were many intervals during the declining phase of the solar cycle when the computed magnetic neutral line at 2.5 R remained relatively simple but was not the source of an observable coronal disk. This latter result was probably because of the limitations of plane-of-sky observations, combined with short-term changes in the corona. Altogether, a single coronal disk, either flat or somewhat convoluted, was recognizable during only one third of the year lifetime of the coronagraph.  相似文献   

13.
The time and spatial characteristics of 324 large sunspots (S50 millionths of the solar hemisphere) selected from the Abastumani Astrophysical Observatory photoheliogram collection (1950–1990) have been studied. The variations of sunspot angular rotation velocity residuals and oscillations of sunspot tilt angle were analyzed. It has been shown that the differential rotation rate of selected sunspots correlates on average with the solar cycle. The deceleration of differential rotation of large sunspots begins on the ascending arm of the activity curve and ends on the descending arm reaching minimum near the epochs of solar activity maxima. This behavior disappears during the 21st cycle. The amplitudes and periods of sunspot tilt-angle oscillations correlate well with the solar activity cycle. Near the epochs of activity maximum there appear sunspots with large amplitudes and periods showing a significant scatter while the scatter near the minimum is rather low. We also found evidence of phase difference between the sunspot angular rotation velocity and the amplitudes and periods of tilt-angle oscillations.  相似文献   

14.
The sidereal rotation rate of the high-latitude solar regions is examined using long-lived photospheric polar faculae. The observations were carried out with the photoheliograph of Kislovodsk Mountain Station of the Pulkovo Observatory from 1982 to 1986. The following facts have been established: (a) There is a differential rotation of the polar faculae close to the maximum of solar activity, while the amount of latitude gradient of solar rotation decreases towards the sunspot minimum; (b) small differences of rotation in the northern and southern hemispheres of the Sun are observed; (c) some deviations of differential rotation curves constructed for each Carrington rotation from the mean curve of differential rotation are revealed. The total amplitude of the maximum positive and negative excesses is about 40–50 m s–1. The positive surplus velocities of solar rotation (the amplitude of which is about 20–25 m s–1) move in the form of a wave from heliographic latitudes 40° with a velocity of 1.6 m s–1. The latitude width of this flow is B 15°. This wave of abnormally high velocity starts in the year of minimum solar activity and reaches the pole 11 years later. The picture is symmetrical relative to the equator.  相似文献   

15.
Plasma data from Pioneers 6–7 and from a variety of satellites operating near the Earth are used to investigate the heliographic latitude dependence of the solar wind bulk speed near the sunspot maximum. No evidence is found for a latitude effect: the latitudinal gradient, if any, turns out to be 2 km (sec degree)–1, to be compared with the gradient of 10 km (sec degree)–1 observed in periods of low or moderate solar activity.  相似文献   

16.
Solar wind data from the Ames experiment aboard the Pioneer Venus Orbiter, coincident with a period of unprecedented solar activity that began at the end of May, 1991, within the highly active earlier portion of 1991, are summarized and discussed. Some comparison is made with corresponding data from Earth. Some particularly large, strong shocks and solar ejecta were observed at Venus. The solar longitude of Venus, relative to associated flares, varied over a wide range, for a series of flares that produced X-rays that saturated the GOES X-ray counters. Some of the disturbances at Venus must be due to CMEs with longitudinal extents up to 40–50 deg.  相似文献   

17.
Sabbah  I. 《Solar physics》1999,188(2):403-417
The two components of the solar diurnal variation observed with two detectors characterized by linearly independent coupling functions have been used to estimate the free space anisotropy vector during the period 1968–1995 using the least-squares method (LSM). The values of Rcshow 20-year magnetic cycle with the lowest values at solar activity minima for positive polarity (qA>0). A good correlation is obtained between Rcand the IMF magnitude. The amplitude of the radial anisotropy (AR) shows 20-year magnetic cycle with the highest values around solar activity minima for qA>0 (1975–1976 and 1995), whereas that of the east-west (A) is minimum. This results in shifting the anisotropy vector to the earliest hours. The amplitude of the anisotropy is high around solar maxima and low around solar minima. It is also enhanced during the declining phase of solar activity (1971, 1984–1985, and 1991). Our results of the anisotropy have been used to calculate the cosmic-ray radial and transverse gradients. The value of the radial gradient exhibits a magnetic polarity dependence as well, with larger value during qA<0 than during qA>0.  相似文献   

18.
In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemispheres of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of the descending phase of solar cycle 23. It is revealed that the flare activity during this cycle is low compared to the previous solar cycle, indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with respect to heliographic latitudes shows a significant asymmetry between northern and southern hemisphere which is maximum during the minimum phase of the solar cycle. The present study indicates that the activity dominates the northern hemisphere in general during the rising phase of the cycle (1997–2000). The dominance of northern hemisphere shifted towards the southern hemisphere after the solar maximum in 2000 and remained there in the successive years. Although the annual variations in the asymmetry time series during cycle 23 are quite different from cycle 22, they are comparable to cycle 21.  相似文献   

19.
Interplanetary Scintillation (IPS) measurements obtained from a large number of compact radio sources (nearly 150 sources) distributed over the heliocentric distance range 15–175 solar radii (R() and heliographic latitude 75° N-75° S have been used to study the global three-dimensional density distribution of the solar wind plasma. Contours of constant electron-density fluctuations (N e) in the heliospheric plasma obtained for both the solar minimum and maximum show a strong solar latitude dependence. During low solar activity, the equatorial density-fluctuation value decreases away from the equator towards higher latitudes and is reduced by 2.5 times at the poles; the level of turbulence is reduced by a factor of 7; the solar-wind mass flux density at the poles is 25% lower than the equatorial value. However, during high solar activity, the average distribution of density fluctuations becomes spherically symmetric. In the ecliptic, the variation of N e with the heliocentric distance follows a power law of the formR –2.2 and it does not show any change with solar activity.  相似文献   

20.
The period-growth dichotomy of the solar cycle predicts that cycle 21, the present solar cycle, will be of long duration (>133 mo), ending after July 1987. Bimodality of the solar cycle (i.e., cycles being distributed into two groups according to cycle length, based on a comparison to the mean cycle period) is clearly seen in a scatter diagram of descent versus ascent durations. Based on the well-observed cycles 8–20, a linear fit for long-period cycles (being a relatively strong inverse relationship that is significant at the 5% level and having a coefficient of determination r 2 0.66) suggests that cycle 21, having an ascent of 42 mo, will have a descent near 99 mo; thus, cycle duration of about 141 mo is expected. Like cycle 11, cycle 21 occurs on the downward envelope of the sunspot number curve, yet is associated with an upward first difference in amplitude. A comparison of individual cycle, smoothed sunspot number curves for cycles 21 and 11 reveals striking similarity, which suggests that if, indeed, cycle 21 is a long-period cycle, then it too may have an extended tail of sustained, low, smoothed sunspot number, with cycle 22 minimum occurring either in late 1987 or early 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号