首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We present virial mass estimates of young massive clusters (YMCs) in the starburst galaxies NGC1140 and M83, determined from high spectral resolution VLT echelle spectroscopy and high spatial resolution Hubble Space Telescope imaging. The survivability of such clusters is important in testing the scenario that YMCs are potentially proto-globular clusters. As young clusters, they lie in the domain in which dynamical masses appear to overestimate true cluster masses, most likely due to the clusters not being virialised. We find that the dynamical mass of NGC1140-1 is approximately ten times greater than its photometric mass. We propose that the most likely explanation for this disparity is the crowded environment of NGC1140-1, rather than this being solely due to a lack of virial equilibrium.  相似文献   

2.
Current cold dark matter models of structure formation make a clear prediction for cosmic structures in the Dark Ages. We discuss the formation and nature of the first collapsed and first luminous objects in the universe arising in these theories. The first virialized objects are dark matter halos at the free streaming length which depends on the mass and nature of the assumed weakly interacting massive particle. The first objects that also contain significant fractions of gas have masses of the cosmological Jeans scale ∼ 104M at the redshifts of interest (z ∼ 30). The first pre-galactic objects that host stars have masses of 106 M . This mass scale is given by the requirement of a sufficiently high virial temperature to enable the chemical reactions necessary to form molecular hydrogen which subsequently allows the gas to dissipate its gravitational energy and to collapse to form a star. An individual massive star is formed per such object and explodes in a supernova within a few Myrs. All these stages of the formation of the first objects are illustrated by fully resolved three dimensional cosmological hydrodynamic simulations. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

3.
We study the A1831 cluster within the framework of our program of the investigation of galaxy clusters with bimodal velocity distributions (i.e., clusters where the velocities of subsystems differ by more than Δ cz ∼ 3000 km/s).We identify two subsystems in this cluster: A1831A (cz = 18970 km/s) and A1831B (cz = 22629 km/s) and directly estimate the distances to these subsystems using three methods applied to early-type galaxies: the Kormendy relation, the photometric plane, and the fundamental plane. To this end, we use the results of our observations made with the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the data adopted from the SDSS DR6 catalog. We confirmed at a 99% confidence level that (1) the two subsystems are located at different distances, which are close to their Hubble distances, and (2) the two subsystems are located behind one another along the line of sight and are not gravitationally bound to each other. Both clusters have a complex internal structure, which makes it difficult to determine their dynamical parameters. Our estimates for the velocity dispersions and masses of the two clusters: 480 km/s and 1.9 × 1014 M for A1831A, 952 km/s and 1.4 × 1015 M for A1831B should be views as upper limits. At least three spatially and kinematically distinct groups of galaxies can be identified in the foreground cluster A1831A, and this fact is indicative of its incomplete dynamical relaxation. Neither can we rule out the possibility of a random projection. The estimate of the mass of the main cluster A1831B based on the dispersion of the line-of-sight velocities of galaxies is two-to-three times greater than the independent mass estimates based on the total K-band luminosity, temperature, and luminosity of the X-ray gas of the cluster. This fact, combined with the peculiarities of its kinematical structure, leads us to conclude that the cluster is in a dynamically active state: galaxies and groups of galaxies with large line-of-sight velocities relative to the center of the cluster accrete onto the virialized nucleus of the cluster (possibly, along the filament directed close to the line of sight).  相似文献   

4.
We report the results of study of the A1569 cluster (12 h 36m.3, +16°35′) and the neighboring A1589 cluster (12 h 41m.3, +18°34′), making up a pair (a supercluster) with a projected size of about 10Mpc. This study is done within the framework of our program for investigating the galaxy clusters with bimodal velocity distributions (i.e., clusters where the velocities of subsystems differ by more than Δcz ∼ 3000 km/s). In the A1569 cluster we have identified two subsystems: A1569A (cz = 20613 km/s) and A1569B (cz = 23783 km/s). These subsystems have the line-of-sight velocity dispersions of 484 km/s and 493 km/s, and dynamic masses within the R 200 radius equal to 1.8 × 1014 and 2.0 × 1014 M , respectively. We directly estimate the distances to these subsystems using three methods applied to earlytype galaxies: the Kormendy relation, photometric plane, and fundamental plane. To this end, we use the results of our observations made with the 1-m telescope of the SAO RAS and the data adopted from the SDSS DR7 catalog. We found that A1569 consists of two independent clusters. The A1569B cluster is located at the Hubble distance corresponding to its radial velocity. The A1569A cluster has a peculiar velocity of −1290 ± 630 km/s, which can be explained by the effect of the more massive A1589 cluster (with a mass of 7.9 × 1014 M ) and of the supercluster where it resides. In all the four bimodal clusters that we studied within the framework of our program, A1035, A1775, A1831, and A1569, the subsystems are independent clusters lying close to the Hubble relation between redshift and distance.  相似文献   

5.
Empirical evidence for both stellar mass black holes (M <102M ) and supermassive black holes (SMBHs, M >105M ) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion σ c , the M σ relation. On the other hand, evidence for “intermediate-mass” black holes (IMBHs, with masses in the range 100–105 M ) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M σ relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M σ relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M σ relation.  相似文献   

6.
New ephemeris and the absolute parameters—masses, radii and luminosities—of the contact systems VW LMi and BX Dra have been obtained, by means of the analysis of the minima data available in the literature (for the determination of the ephemeris) and combining the previously published spectroscopic information and the results of the Wilson-Devinney method using photometric data (for the determination of the absolute parameters). The VW LMi OC analysis confirms the multiplicity of the system detected previously from the spectroscopic data. Masses of the VW LMi contact system primary and secondary components are 1.67 ± 0.02M and 0.70 ± 0.02M , respectively. The corresponding radii are 1.709 ± 0.007R and 1.208 ± 0.006R , respectively. For the BX Dra contact system the masses are 2.19 ± 0.13M and 0.63 ± 0.06M , and the radii, 2.13 ± 0.04R and 1.26 ± 0.03R , for the primary and secondary, respectively. In both cases, the estimated luminosities seem to be slightly greater that the values derived from the Hipparcos distances.  相似文献   

7.
We present kinematics and photometric evidence for the presence of seven candidate tidal dwarf galaxies in Stephan's Quintet. The central regions of the two most probable parent galaxies, NGC 7319 and NGC 7318B, contain little or no gas whereas the intragroup medium and, in particular, the optical tails that seem to be associated with NGC 7318B are rich in cold and ionized gas. Two tidal dwarf candidates may be located at the edge of a tidal tail, another located within a tail, and for the four others there is no obvious stellar/gaseous bridge between them and the parent galaxy. Two of the candidates are associated with H I clouds, one of which is, in addition, associated with a CO cloud. All seven regions have low continuum fluxes and high Hα luminosity densities [F(Hα) = (1-60) × 10-14 ergs s-1 cm-2]. Their magnitudes (MB = –16.1 to –12.6), sizes (∼ 3.5 h75 -1 kpc), colors (typically B – R = 0.7), and gas velocity gradients (∼ 8 –26 h75 km s-1 kpc-1) are typical for tidal dwarf galaxies. In addition, the ratios between their star formation rates determined from Hα and from the B-band luminosity are typical of other tidal dwarf galaxies. The masses of the tidal dwarf galaxies in Stephan's Quintet range from ∼ 2 × 108 to 1010 M, and the median value for their inferred mass-to-light ratios is 7 (M/L). At least two of the systems may survive possible ‘fallbacks’ or disruption by the parent galaxies and may already be, or turn into, self-gravitating dwarf galaxies, new members of the group. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

8.
A catalog of massive (⩾10 M ) stars in binary and multiple systems with well-known masses and luminosities has been compiled. The catalog is analyzed using a theoretical mass-luminosity relation. This relation allows both normal main-sequence stars and stars with peculiarities: with clear manifestations of mass transfer, mass accretion, and axial rotation, to be identified. Least-squares fitting of the observational data in the range of stellar masses 10M M ≲ 50 M yields the relation LM 2.76. An erratum to this article is available at .  相似文献   

9.
The mass of central bodies in a number of Milky-Way globular clusters is estimated based on the stellar radial-velocity dispersion data. It is assumed that stars located close to the center of the cluster (i.e., to the black hole) rotate about it, have masses on the order of the solar mass, and that the mass of the gravitating center is greater by a factor of 1000. The radial velocities of stars in the vicinity of cluster centers are analyzed for two hypothetical extreme cases: (1) ordered orbital motion of stars about the gravitating center and (2) chaotic orbital motions. The masses inferred for most of the clusters (102–104 M ) correspond to intermediate-mass black holes. Another important result of this study consists in the determination of the quantity l, the characteristic scale length of the additional spatial dimension. Given the age and mass of the globular cluster NGC 6397 we estimate l to be between 0.02 and 0.14 mm.  相似文献   

10.
New Claret evolutionary model-tracks, constructed for the first time for studying close binary systems (CBS) including tidal evolution constants, are used to determine the age of 112 eclipsing-variable stars in the Svechnikov-Perevozkina catalog by the method of isochrones. There is some interest in comparing the calculated ages with previous estimates obtained for these same close binary systems using evolutionary modeltracks for individual stars taking their mass loss into account. A correlation of the ages of the principal and secondary components is noted, which is most marked for massive close binaries with principal components having masses M1 ≥ 3 M. A rejuvenating effect is found to occur for the systems studied here as calculated on the new tracks; it is most distinct for low-mass close binaries with a total mass M1 + M2 ≤ 3.5 M and is predicted theoretically in terms of magnetic braking. The calculated broadband grid of isochrones, from zero-age main-sequence (ZAMS) to the age of the galaxy, can be used for estimating the ages of close binaries from other catalogs. Ages are given for the 112 eclipsing-variable close binaries with detached components lying within the main sequence. __________ Translated from Astrofizika, Vol. 50, No. 2, pp. 299–312 (May 2007).  相似文献   

11.
We have obtained and analyzed UBVRI CCD frames of the young, 4–10 Myr, open cluster NGC 3293 and the surrounding field in order to study its stellar content and determine the cluster’s IMF. We found significantly fewer lower mass stars, M≤2.5M , than expected. This is particularly so if a single age for the cluster of 4.6 Myr is adopted as derived from fitting evolutionary models to the upper main sequence. Some intermediate-mass stars near the main sequence in the HR diagram imply an age for the cluster of about 10 Myr. When compared with the Scalo (The stellar initial mass function. ASP conference series, vol. 24, p. 201, 1998) IMF scaled to the cluster IMF in the intermediate mass range, 2.5≤M/M ≤8.0 where there is good agreement, the high mass stars have a distinctly flatter IMF, indicating an over abundance of these stars, and there is a sharp turnover in the distribution at lower masses. The radial density distribution of cluster stars in the massive and intermediate mass regimes indicate that these stars are more concentrated to the cluster core whereas the lower-mass stars show little concentration. We suggest that this is evidence supporting the formation of massive stars through accretion and/or coagulation processes in denser cluster cores at the expense of the lower mass proto-stars. R.W. Slawson and E.P. Horch are guest investigators at the University of Toronto Southern Observatory, Las Campanas, Chile.  相似文献   

12.
The extensiveUBV observations of SV Camelopardalis by Patkos (1982) have been analysed to derive the orbital elements of the system. The data were corrected for the effect of third body (Sarma, Sarma & Abhyankar 1985) and for the ‘RS CVn’ distortion wave (Sarma, Vivekanandarao & Sarma 1988). The cleaned data were used to obtain a preliminary solution by a modified version of Wellmann method (Sarma & Abhyankar 1979) from which we concluded that the primary eclipse is a transit. The final orbital elements of SV Cam were obtained by the modified version (Sarma 1988; Sarmaet al. 1987) of WINK program by Wood (1972). The colour and median brightness variation are discussed. From the spectroscopic mass functionf(m) = 0.118 M (Hiltner 1953), the absolute dimensions of the components are found to be 0.826 Mbd & 0.592 M and 1.236 R & 0.778 R for the primary and secondary components, respectively. The age of the binary system is estimated to be 6.0 ± 1.0 × 108 years  相似文献   

13.
We apply the technique of astrometric mass determination to measure the masses of 21 main-belt asteroids; the masses of 9 Metis (1.03 ± 0.24 × 10-11 M), 17 Thetis (6.17 ± 0.64 × 10-13 M), 19 Fortuna (5.41 ± 0.76 × 10-12 M), and 189 Phthia (1.87 ± 0.64 × 10-14 M) appear to be new. The resulting bulk porosities of 11 Parthenope (12±4%) and 16 Psyche (46±16%) are smaller than previously-reported values. Empirical expressions modeling bulk density as a function of mean radius are presented for the C and S taxonomic classes. To accurately model the forces on these asteroids during the mass determination process, we created an integrated ephemeris of the 300 large asteroids used in preparing the DE-405 planetary ephemeris; this new BC-405 integrated asteroid ephemeris also appears useful in other high-accuracy applications.  相似文献   

14.
We construct for the first time, the sequences of stable neutron star (NS) models capable of explaining simultaneously, the glitch healing parameters, Q, of both the pulsars, the Crab (Q≥0.7) and the Vela (Q≤0.2), on the basis of starquake mechanism of glitch generation, whereas the conventional NS models cannot give such consistent explanation. Furthermore, our models also yield an upper bound on NS masses similar to those obtained in the literature for a variety of modern equations of state (EOSs) compatible with causality and dynamical stability. If the lower limit of the observational constraint of (i) Q≥0.7 for the Crab pulsar and (ii) the recent value of the moment of inertia for the Crab pulsar (evaluated on the basis of time-dependent acceleration model of the Crab Nebula), I Crab,45≥1.93 (where I 45=I/1045 g cm2), both are imposed together on our models, the models yield the value of matching density, E b =9.584×1014 g cm−3 at the core-envelope boundary. This value of matching density yields a model-independent upper bound on neutron star masses, M max≤2.22M , and the strong lower bounds on surface redshift z R ≃0.6232 and mass M≃2.11M for the Crab (Q≃0.7) and the strong upper bound on surface redshift z R ≃0.2016, mass M≃0.982M and the moment of inertia I Vela,45≃0.587 for the Vela (Q≃0.2) pulsar. However, for the observational constraint of the ‘central’ weighted mean value Q≈0.72, and I Crab,45>1.93, for the Crab pulsar, the minimum surface redshift and mass of the Crab pulsar are slightly increased to the values z R ≃0.655 and M≃2.149M respectively, whereas corresponding to the ‘central’ weighted mean value Q≈0.12 for the Vela pulsar, the maximum surface redshift, mass and the moment of inertia for the Vela pulsar are slightly decreased to the values z R ≃0.1645, M≃0.828M and I Vela,45≃0.459 respectively. These results set an upper and lower bound on the energy of a gravitationally redshifted electron-positron annihilation line in the range of about 0.309–0.315 MeV from the Crab and in the range of about 0.425–0.439 MeV from the Vela pulsar.  相似文献   

15.
The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z>6 only stars of relatively high mass (>3 M) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3–40 M using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (>3 M) asymptotic giant branch stars can only be dominant dust producers if SNe generate ≲3×10−3 M of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.  相似文献   

16.
New BV light curves of the A-type W UMa star AQ Psc (P = 0.476d) have been observed and are described. A few times of minimum light are obtained and the ephemeris is improved. The light curves are analyzed for the binary parameters with a light curve synthesis method. Combining the results with Lu and Rucinski’s spectroscopic mass ratio we determined the masses and radii of the components: M 1 = 1.69M , M 2 = 0.38M , R 1 = 1.77R , and R 2 = 0.89R .  相似文献   

17.
UBV photometric observations and elements of TT Hydrae obtained by Kulkarni and Abhyankar (1980) are combined with the radial velocity curve of Popper (1979, personal communication) to derive the absolute dimensions and. a model of this important Algol system. While the photometric ratios of radii inV andB are in agreement givingk = 0.3812 for a limb darkening coefficient ofx = 0.6, application of Irwin’s (1947) method givesx = 0.4 forU. The primary is found to be a main sequence Al V star of mass 2.61M and radius 2.01 R, and the secondary is classified as a Kl III star of mass 0.70M and radius 5.33R . The observed Fourier coefficients for the light outside the eclipse agree with those calculated from theory for the reflection and ellipticity effects. The system shows an ultraviolet excess of 0.5 to 0.6 magnitudes during primary eclipse, which is attributed to an asymmetric circumstellar distribution of matter around the primary. The evolutionary status of the secondary, which does not appear to fill its Roche lobe completely, is discussed.  相似文献   

18.
Based on two high-dispersion spectra of the close binary BW Boo, we have detected lines of the secondary component whose contribution to the combined spectrum does not exceed 2%. We have determined the rotation velocities of the components and spectroscopic orbital elements. Numerous lines of neutral and ionized iron have been used to determine the effective temperature and surface gravity for the primary component. The photometric light curves for this binary have been solved for the first time. Its primary component is an A2Vm star with a mass of 2 ± 0.1M and a radius of 1.9 ± 0.4R . Its rotation velocity is 2 km s−1, which is a factor of 18 lower than the pseudo-synchronous velocity for this component. The G6 secondary component, a T Tau star, has a rotation velocity of 17 km s−1, amass of 1.1M , and a radius of 1 R . The age of the binary has been estimated to be 107 yr.  相似文献   

19.
Hydrodynamic calculations of nonlinear radial oscillations of LBV stars with effective temperatures 1.5 × 104 K ⩽ T eff ⩽ 3 × 104 K and luminosities 1.2 × 106 L L ⩽ 1.9 × 106 L have been performed. Models for the evolutionary sequences of Population I stars (X = 0.7, Z = 0.02) with initial masses 70M M ZAMS ⩽ 90M at the initial helium burning stage have been used as the initial conditions. The radial oscillations develop on a dynamical time scale and are nonlinear traveling waves propagating from the core boundary to the stellar surface. The amplitude of the velocity variations for the outer layers is several hundred km s−1, while the bolometric magnitude variations are within ΔM bol ⩽ 0· m 2. The onset of oscillations is not related to the κ-mechanism and is attributable to the instability of a self-gravitating envelope gas whose adiabatic index is close to its critical value of Γ1 = 4/3 due to the dominant contribution of radiation in the internal energy and pressure. The interval of magnitude variation periods (6 days ≤ II ≤ 31 days) encompasses all currently available estimates of the microvariability periods for LBV stars, suggesting that this type of nonstationarity is pulsational in origin.  相似文献   

20.
We analyze the properties of galaxy clusters in the region of the Leo supercluster using observational data from the SDSS and 2MASS catalogs. We have selected 14 galaxy clusters with a total dynamical mass of 1.77 × 1015 M in the supercluster region 130 by 60 Mpc in the plane of the sky (z ≃ 0.037). The composite luminosity function of the supercluster is described by a Schechter function with parameters that, within the error limits, correspond to field galaxies and does not differ from the luminosity function of the richer Ursa Major (UMa) supercluster for the same luminosity range (the bright end). The luminosity functions of early-type and late-type galaxies in Leo at the faint end are characterized by a sharp decrease (α = −0.60±0.08) and a steep increase (α = −1.44± 0.10) in the number of galaxies, respectively. In the virialized cluster regions, the fraction of early-type galaxies selected by the u-r color, bulge contribution, and concentration index among the galaxies brighter than M K * + 1 is, on average, 62%. This fraction is smaller than that in the UMa supercluster at a 2–3σ level. The near-infrared luminosities of galaxy clusters down to a fixed absolute magnitude correlate with their masses almost in the same way as for other samples of galaxy clusters (L 200,K M 2000.63±0.11)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号