首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The performance goals of the Square Kilometre Array (SKA) are such that major departures from prior practice for imaging interferometer arrays are required. One class of solutions involves the construction of large numbers of stations, each composed of one or more small antennas. The advantages of such a “large-N” approach are already documented, but attention has recently been drawn to scaling relationships for SKA data processing that imply excessive computing costs associated with the use of small antennas. In this paper we examine the assumptions that lead to such scaling laws, and argue that in general they are unlikely to apply to the SKA situation. A variety of strategies for SKA imaging which exhibit better scaling behaviour are discussed. Particular attention is drawn to field of view issues, and the possibility of using weighting functions within an advanced correlator system to precisely control the field-of-view.  相似文献   

2.
K.E. Johnson   《New Astronomy Reviews》2004,48(11-12):1337
The Square Kilometer Array (SKA) will enable studies of star formation in nearby galaxies with a level of detail never before possible outside of the Milky Way. Because the earliest stages of stellar evolution are often inaccessible at optical and near-infrared wavelengths, high spatial resolution radio observations are necessary to explore extragalactic star formation. The SKA will have the sensitivity to detect individual ultracompact HII regions out to the distance of nearly 50 Mpc, allowing us to study their spatial distributions, morphologies, and populations statistics in a wide range of environments. Radio observations of Wolf-Rayet stars outside of the Milky Way will also be possible for the first time, greatly expanding the range of conditions in which their mass loss rates can be determined from free-free emission. On a vastly larger scale, natal of super star clusters will be accessible to the SKA out to redshifts of nearly z 0.1. The unprecedented sensitivity of radio observations with the SKA will also place tight constraints on the star formation rates as low as 1M yr−1 in galaxies out to a redshift of z 1 by directly measuring the thermal radio flux density without assumptions about a galaxy’s magnetic field strength, cosmic ray production rate, or extinction.  相似文献   

3.
Coral reefs are net sinks for C, principally as CaCO3 accretion. It is possible to predict quite accurately the rate of production, given adequate information about any particular reef environment. The best data set for an extensive region is that for the Great Barrier Reef (GBR). Careful analysis of this region and the incorporation of previously documented present day system calcification rates suggest net production (G) from G = 1 (kg CaCO3 m−2 yr−1) for fringing reefs, to G = 1.9 for planar (infiled platform) reefs, G = 3 for ribbon reefs and lagoonal reefs. The 20,055 km2 of reefs in the GBR are thus estimated to average G = 2.4, resulting in a total production of 50 million tonnes yr−1. In a 50–100 year Greenhouse scenario of rising sealevel, we predict that recolonisation of present day reef flats will be extensive and prolific. Production will increase substantially, and this could be by as much as 40% (ranging from 0% for deep shoals to 180% for fringing reefs) to give 70 million tonnes yr−1 if the rate of sealevel rise reaches or exceeds 6–8 mm yr−1We estimate 115,000 km2 of oceanic atolls worldwide. Drawing on points equivalence from the detailed analysis of the GBR, we estimate the atolls presently produce 160 million tonnes yr−1. We predict that a similar 40% increase could be possible in the next 100 years or so resulting in a production of 220 million tonnes.Accepting an existing estimate of 617,000 km2 for reefs worldwide, drawing from our projections from the GBR and the atolls, and making some assumptions about the remaining reef types (we suggest fringing reefs to dominate) we estimate global reef production at the present time to be 900 million tonnes yr−1. Within the next 100 years or so, we suggest this rate could almost double to 1800 million tonnes. In the long term (several centuries) we predict that the continuing trend of recolonisation, particularly of fringing and planar reefs could result in the production of > 3000 million tonnes yr−1 if rates of sealevel rise approaching or exceeding 6–8 mm yr−1 are achieved. Eventually (> 500 yr), reefs could actually “drown” due to inability to match the rate of sealevel increase if that rate significantly exceeds 6–8 mm yr−1.Thus, coral reefs at present act as a sink for 111 million tonnes C yr−1, the equivalent of 2% of present output of anthropogenic CO2. In the short term Greenhouse scenario (100 yr) we predict this could increase to the equivalent of 4% of the present CO2 output. In the much longer term (several centuries), if all trends continue, this could increase to the equivalent of as much as 9% of the present CO2 output.Unfortunately, we also predict that this considerable sink for C will be most likely of negative value in alleviating Greenhouse because of the immediate effect of CaCO3 precipitation is to raise the PCO2 of the surface oceans — ie, ot encourage CO2 efflux to the atmosphere. We do not attempt to quantify this effect.Other Greenhouse changes such as seawater temperature increase, changes in cloud cover, increased rainfall and runoff, increased storm activity, and changes in dissolved CO2 concentration and surface ocean circulation may complicate the reef response. However, we suggest that sealevel rise will be the dominant influence, at least during the next 100 years or so.  相似文献   

4.
Five out of six Square Kilometre Array (SKA) science programs need extensive surveys at frequencies below 1.4 GHz and only four need high-frequency observations. The latter ones drive to expensive high surface accuracy collecting area, while the former ask for multi-beam receiver systems and extensive post correlation processing. In this paper, we analyze the system cost of a SKA when the field-of-view (Fov) is extended from 1 deg2 at 1.4 GHz to 200 deg2 at 0.7 GHz for three different antenna concepts. We start our analysis by discussing the fundamental limitations and cost issues of wide-band focal plane arrays (FPA) in dishes and cylinders and of wide-band receptors in aperture arrays. We will show that a hybrid SKA in three different antenna technologies will give the highest effective sensitivity for all six key science programs.  相似文献   

5.
We discuss the ability of the SKA to observe QSO proper motions induced by long-wavelength gravitational radiation. We find that the SKA, configured for VLBI with multiple beams at high frequency (8 GHz), is sensitive to a dimensionless characteristic strain of roughly 10−13, comparable to (and with very different errors than) other methods in the 1/yr frequency band such as pulsar timing.  相似文献   

6.
Software costs for radio telescopes have nearly always been underestimated. Since the Square Kilometre Array is often called a software telescope, repeating the usual error would be particularly egregious. We estimate software costs by scaling from the reasonably well-known costs for the Atacama Large Millimeter Array. The resulting model has sharp dependency on the complexity of the SKA, suggesting the obvious – that software costs can most easily be limited by constraining the scientific and operational requirements. A bottom-up costing will not be possible until SKA is much more clearly defined. For the moment, we recommend that 20% of the SKA budget be allocated to software development.  相似文献   

7.
Large number of microwave antennas of size and surface accuracy appropriate for the Square Kilometre Array (SKA) have not been manufactured previously. To minimize total cost, the design needs to be much more carefully considered and optimized than would be affordable for a small number of antennas. The required surface area requires new methods of manufacture and production-line type assembly to be considered. A blend of past antenna construction technology, creativity, and new technology is needed to provide the best possible telescope for the proposed SKA science goals. The following key concepts will be discussed with respect to reflector antennas and many supporting photographs, figures and drawings will be included.
  • Surface and supporting structure – comparison of panels with a one-piece shell as produced by hydroforming.
  • Combined reflector and mount geometry – performance/cost materially governed by this geometry which must be optimized for SKA requirements which are significantly different from typical communications antennas
  • Types of fully steerable mounts – king post, turntable bearing and wheel and track
  • Pointing accuracy – factors effecting cost, non-repeatable and repeatable errors
  • Axis drive concepts – traction devices, gears, screws, etc.
  • Life cycle costs – maintenance and power costs must be considered
  • Synergistic design – all of the above factors must be considered together with the wideband feed and receiver system to optimize the whole system
  •   相似文献   

    8.
    NASA is proposing a new receiving facility that needs to beamform broadband signals from hundreds of antennas. This is a similar problem to SKA beamforming with the added requirement that the processing should not add significant noise or distortion that would interfere with processing spacecraft telemetry data. The proposed solution is based on an FX correlator architecture and uses oversampling polyphase filterbanks to avoid aliasing. Each beamformer/correlator module processes a small part of the total bandwidth for all antennas, eliminating interconnection problems. Processing the summed frequency data with a synthesis polyphase filterbank reconstructs the time series. Choice of suitable oversampling ratio, and analysis and synthesis filters can keep aliasing below −39 dB while keeping the passband ripple low. This approach is readily integrated into the currently proposed SKA correlator architecture.  相似文献   

    9.
    Towards the high-latitude cloud MBM 40, we identify 3 dense molecular cores of M0.2–0.5 M, and sizes of 0.2 pc in diameter embedded in the H I cloud of 8 M which is observed to be extended along the northeast–southwest direction. The molecular cloud is located almost perpendicularly to the H I emission. We confirm the previous result of Magnani et al. that MBM 40 is not a site for new star formations. We found a very poor correlation between the H I and the IRAS 100 μm emissions, but the CO (1–0) and 100 μm emissions show a better correlation of WCO/I100=1±0.2 K km s−1 (MJy sr−1)−1. This ratio is larger by a factor of ≥5 than in dense dark clouds, which may indicate that the CO is less depleted in MBM 40 than in dense dark clouds.  相似文献   

    10.
    ASTRON has demonstrated the capabilities of a 4 m2, dense phased array antenna (Bij de Vaate et al., 2002) for radio astronomy, as part of the Thousand Element Array project (ThEA). Although it proved the principle, a definitive answer related to the viability of the dense phased array approach for the SKA could not be given, due to the limited collecting area of the array considered. A larger demonstrator has therefore been defined, known as “Electronic Multi-Beam Radio Astronomy Concept”, EMBRACE, which will have an area of 625 m2, operate in the band 0.4–1.550 GHz and have at least two independent and steerable beams. With this collecting area EMBRACE can function as a radio astronomy instrument whose sensitivity is comparable to that of a 25-m diameter dish. The collecting area also represents a significant percentage area (∼10%) of an individual SKA “station.” This paper presents the plans for the realisation of the EMBRACE demonstrator.  相似文献   

    11.
    The sensitivity and versatility of SKA will provide microarcsec astrometric precision and high quality milliarcsec-resolution images by simultaneously detecting calibrator sources near the target source. To reach these goals, we suggest that the long-baseline component of SKA contains at least 25% of the total collecting area in a region between 1000 and 5000 km from the core SKA. We also suggest a minimum of 60 elements in the long-baseline component of SKA to provide the necessary (uv) coverage. For simultaneous all-sky observations, which provide absolute astrometric and geodetic parameters, we suggest using 10 independent subarrays each composed of at least six long-baseline elements correlated with the core SKA. We discuss many anticipated SKA long-baseline astrometric experiments: determination of distance, proper motion and orbital motion of thousands of stellar objects; planetary motion detections; mass determination of degenerate stars using their kinetics; calibration of the universal distance scale from 10 to 107 pc; the core and inner-jet interactions of AGN. With an increase by a factor of 10 in absolute astrometric accuracy using simultaneous all sky observations, the fundamental quasar reference frame can be defined to <10 μas and tied to the solar-system dynamic frame to this accuracy. Parameters associated with the earth rotation and orientation, nutation, and geophysical parameters, can be accurately monitored. Tests of fundamental physics include: solar and Jovian deflection experiments, the sky frame accuracy needed to interpret the gravity wave/pulsar-timing experiment, accurate monitoring of spacecraft orbits that impact solar system dynamics.  相似文献   

    12.
    We have calculated Einstein A-coefficients for electric dipole transitions in the ground vibrational state of the moleculesH 2 D + andD 2 H +, between the rotational levels up to 2200 and 2000 cm–1, respectively. These A-coefficients are used for computing the mean radiative life-times of the levels. These data play an important role in analysing the spectra from astronomical objects.  相似文献   

    13.
    14.
    The Square Kilometre Array (SKA) is expected to become the world’s most powerful radio telescope at meter and centimeter wavelength in the coming decades. The construction of SKA will be divided into two phases. The first phase (SKA1), scheduled for completion in 2023, will construct 10 % of the whole collecting area. The second phase (SKA2) will build the rest 90 % collecting area. The SKA1 consists of several types of arrays including SKA1-low and SKA1-mid. The latter is a dish array consisting of ~200 medium-size antennas. The integrated dish array in SKA2 will expand to 2500 dishes, spreading 3000 kilometers across the southern part of Africa. The demanding specifications and enormous number of the SKA dish raise challenges in the dish development such as mass production with high performance at low cost, quick installation and high reliability. Dish Verification Antenna China (DVA-C) was built as one of three initial prototypes. A novel single-piece panel reflector made of carbon fiber reinforced polymer (CFRP) was adopted. In this study, an L-band receiver is installed to make DVA-C a complete system for experiments on antenna performance test and preliminary observations. The performance of DVA-C including the system noise temperature, pointing accuracy, antenna pattern, and aperture efficiency has been tested. Preliminary observations such as pulsars and HI are then conducted, which indicates that the DVA-C can not only serve as an educational instrument and key technology test bed, but also be applied for scientific work such as pulsar timing, all-sky HI survey, multi-frequency monitoring of variable sources etc.  相似文献   

    15.
    Only in recent years has the realization emerged that galaxies do not dominate the universal baryon budget but are merely the brightest pearls of an underlying cosmic web. Although the gas in these inter-galactic filaments is moderately to highly ionized, QSO absorption lines have shown that the surface area increases dramatically in going down to lower HI column densities. The first image of the cosmic web in HI emission has just been made of the Local Group filament connecting M31 and M33. The corresponding HI distribution function is in very good agreement with that of the QSO absorption lines, confirming the 30-fold increase in surface area expected between 1019 and 1017 cm−2. The critical observational challenge is crossing the “HI desert”, the range of log(NHI) from about 19.5 down to 18, over which photo-ionization by the intergalactic radiation field produces an exponential decline in the neutral fraction from essentially unity down to a few percent. Nature is kinder again to the HI observer below log(NHI) = 18, where the neutral fraction decreases only very slowly with log(NHI). With the SKA, we can begin the systematic study of the cosmic web beyond the Local Group. With moderate integration times, the necessary resolution and sensitivity can be achieved out to distances beyond the Virgo cluster. When combined with targeted optical and UV absorption line observations, the total baryonic masses and enrichment histories of the cosmic web will be determined over the complete range of environmental over-densities.  相似文献   

    16.
    Three years of regular weekly/biweekly monitoring of seasonal changes in temperature, transparency, chlorophyll a (CHL) and bacteria [erythrosine-stained microscopic counts and cultivable colony forming units (CFUs)] at the vertical profile in the South basin of Lake Baikal (51°54′195″N, 105°04′235″E, depth 800 m) were evaluated. In more detail, the structure and function of phytoplankton and the microbial loop in the euphotic layer at the same site were investigated during the late-winter–early-spring period under the ice. The depth of euphotic zone (up to 1% of surface irradiation) was 35 to 40 m. Primary production was measured three times a week with the 14C method in 2, 10, 20, 30 and 40 m. Maximum production was found in 10 m, with lower values towards the surface (light inhibition) and towards the lower layers. The total production in cells larger than 1 μm in the column (0–40 m) was 204–240 mg C d−1 m−2, 30–40% of it being in cells 1–3 μm (mostly picocyanobacteria), which represented roughly 9% of the total chlorophyll a (estimated from pigment analyses). A major part of phytoplankton biomass was formed by diatoms (Synedra acus Hust., Asterionella formosa Hass. and Stephanodiscus meyerii Genkal & Popovskaya). Total production (including extracellular, dissolved organic matter) was 235–387 mg C day−1 m−2, and the exudates were readily used by bacteria (particles 0.2–1 μm). This part amounted to 1–5% of cellular production in 2 to 20 m and 11–77% of cellular production in 20–40 m, i.e., in light-limited layers. From 0 to 30 m, chlorophyll a concentration was 0.8 to 1.3 μg l−1, wherefrom it decreased rapidly to 0.1 μg l−1 towards the depth of 40 m. Bacteria (DAPI-stained microscopic counts) reached 0.5–1.4×106 ml−1; their cell volumes measured via image analysis were small (average 0.05 μm−3), often not well countable when erythrosine stain was used. Bacterial biomasses were in the range of 6–21 μg C l−1. Numbers of colony forming units (CFUs) on nutrient fish-agar were c. 3–4 orders lower than DAPI counts. The amounts of heterotrophic protists were low, whereby flagellates reached 6 to 87 ml−1 and ciliates, 0.2–1.2 ml−1 (mostly Oligotrichida). Bacterial production was measured in the same depths as primary production using 3H-thymidine (Thy) and 14C-leucine (Leu) uptake. Consistently, bacterial abundances, biomasses, thymidine and leucine production were higher by 30–50% in layers 2, 10 and 20 m compared with that in the deeper 30 and 40 m, where cellular primary production was negligible. Leucine uptake in the deeper layers was even three times lower than in the upper ones. From the comparison of primary and bacterial production, bacteria roughly use 20–40% of primary production during 24 h in the layers 2 to 20 m.  相似文献   

    17.
    The present-day Universe is seemingly dominated by dark energy and dark matter, but mapping the normal (baryonic) content remains vital for both astrophysics – understanding how galaxies form – and astro-particle physics – inferring properties of the dark components.The Square Kilometer Array (SKA) will provide the only means of studying the cosmic evolution of neutral hydrogen (HI) which, alongside information on star formation from the radio continuum, is needed to understand how stars formed from gas within dark-matter over-densities and the rôles of gas accretion and galaxy merging.‘All hemisphere’ HI redshift surveys to z 1.5 are feasible with wide-field-of-view realizations of the SKA and, by measuring the galaxy power spectrum in exquisite detail, will allow the first precise studies of the equation-of-state of dark energy. The SKA will be capable of other uniquely powerful cosmological studies including the measurement of the dark-matter power spectrum using weak gravitational lensing, and the precise measurement of H0 using extragalactic water masers.The SKA is likely to become the premier dark-energy-measuring machine, bringing breakthroughs in cosmology beyond those likely to be made possible by combining CMB (e.g. Planck), optical (e.g. LSST, SNAP) and other early-21st-century datasets.  相似文献   

    18.
    Although several proxies have been proposed to trace the course of environmental and climatological fluctuations, precise paleoclimate records from the tropics, notably from Africa are still sorely lacking today. Stable carbon isotopes (δ13C) in tree rings are an attractive record of climate. In this study, the patterns and climatic signals of δ13C ratios were determined on tree rings of deciduous (Acacia senegal, Acacia tortilis, Acacia seyal) and an evergreen (Balanites aegyptiaca) species, from a semi-arid Acacia Woodland in Ethiopia. δ13C inter-annual patterns are synchronous among the co-occurring species. A declining trend with time was observed in δ13C, notably for B. aegyptiaca, which could be due to anthropogenic increases in atmospheric CO2 concentration and decrease in atmospheric δ13C. Tree ring δ13C values of all the species revealed significant negative correlation with precipitation amount but not with temperature and relative humidity. The δ13C series of the deciduous species shows a higher correlation (r = − 0.70 to − 0.78) with precipitation than the evergreen species (r = − 0.55). A master δ13C series, composed of the average of the three Acacia species, displayed stronger significant correlation (r = − 0.82) than any of the individual species δ13C series. The weak relationship between temperature and δ13C in this study indicates that photosynthetic rate is not a significant factor. Moisture stress, however, may have a direct impact on the stomatal conductance and explain the strong negative relationship between δ13C and precipitation. The results demonstrate the potential of δ13C in tree rings to reflect physiological responses to environmental changes as a vehicle for paleoclimatic reconstruction, which is important to understand tree response to past and future climate change.  相似文献   

    19.
    Energetic particle (0.1 to 100 MeV protons) acceleration is studied by using high resolution interplanetary magnetic field and plasma measurements at 1 AU (HEOS-2) and at 5 AU (Pioneer 10). Energy changes of a particle population are followed by computing test particle trajectories and the energy changes through the particle interaction with the time varying magnetic field. The results show that considerable particle acceleration takes place throughout the interplanetary medium, both in the corotating interaction regions (CIR) (5 AU), and in quiet regions (1 AU). Although shocks may contribute to acceleration we suggest statistical acceleration within the CIRs is sufficient to explain most energetic particle observations (e.g., McDonaldet al., 1975; Barnes and Simpson, 1976).The first and second order statistical acceleration coefficients which include transit time damping and Alfvén resonance interactions, are found to be well represented byD T 8.5×10–6 T 0.5 MeV s–1 andD TT 4×10–6 T 1.5 MeV2 s–1 at 5 AU.By comparison, Fisk's estimates (1976), based on quasi-linear theory for transit-time damping, gaveD TT 5×10–7 T MeV2 s–1 at 1 AU.  相似文献   

    20.
    We present an analysis of multi-epoch global VLBI observations of the Compact Symmetric Objects: 2352+495 and 0710+439 at 5 GHz. Analysis of data spread over almost two decades shows strong evidence for an increase in separation of the outer components of both sources at a rate of 0.2h−1c (for q=0.5 and H=100h km s−1Mpc−1). Dividing the overall sizes of the sources by their separation rates implies that these Compact Symmetric Objects have a kinematic age 104 years. These results (and those for other CSOs) strongly argue that CSOs are indeed very young sources that probably evolve into much larger classical doubles.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号