首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
PHC管桩施工速度快,质量易于保证,经济性好,所以越来越多的建筑地基采用高强度预应力混凝土管桩处理。但是PHC管桩施工遇到硬层沉桩困难,因总锤击数过高,易造成桩体疲劳破坏,难以保证成桩质量和施工速度,且如果场地地下水丰富,水位高,高于桩顶,在沉桩过程中采用开口型桩靴,沉桩时土和地下水会进入管桩芯内,且随沉桩深度增大而升高,当PHC预应力管桩桩芯内的土或地下水较高时,沉桩时易因"水锤效应"使桩体爆裂,易造成质量隐患,危及建筑物安全。以在某"吹沙填海"场地进行PHC管桩工程实例研究解决此类问题的措施。  相似文献   

2.
针对雅鲁藏布江冷达水电站深厚砂卵砾石层钻进遇到孤石致使跟管受阻问题,采用一种可伸缩两翼扩孔钻头,将套管下方的孤石扩出口径略大于套管外径的环状空隙,使套管继续跟进到达计划深度。该方法既可避免传统孔内爆破炸碎孤石方法的危险性和繁琐性,也可克服采用套管钻头旋转跟进套管由于扭矩大导致的套管磨损大、易断裂、成本高等问题。该工艺操作易掌握,不受深度限制,在跟管扩孔钻进中,甚至于处理孔内事故时均可采用,值得推广。  相似文献   

3.
我们在某金矿区应用LF-65螺杆钻对ZK169孔实施定向纠斜,由于机场泥浆净化设备不完善,孔内岩粉、沉砂较多,第一回次我们直接把螺杆钻具下至孔底,开泵钻进,泥浆泵憋泵,不进尺,提钻检查,发现螺杆钻具卡死。其原因是:下钻途中,含岩粉、沉砂的孔内浆液在液柱压力作用下从钻具底部回灌,浆液在螺旋线密闭空间里上返,其工作原理如同水力旋流器,形成沿螺旋线向下流动的外旋流和沿螺旋线向上流动的内旋流。浆液中的岩粉、沉砂受到冲击、振动、重力和离心力的合力作用,悬浮浆液的密度、岩屑和沉砂等固体粒子粒度和密度  相似文献   

4.
我国长江中下游沿岸地基中分布有较厚的砂土层,砂土层是桩基的良好持力层。该地区砂性土埋藏浅,厚度大,往往夹杂粉土或粉质黏土,一般随深度增大,砂土变密实。已有研究成果中,针对桩身穿过多层砂土条件下桩基承载力的研究较少。砂土地基中打入桩试验结果表明,砂性土的状态对打入式预制桩的施工产生很大的影响,在松散或稍密的砂性土中沉桩一般比较容易,而在中密或密实的砂性土中则较为困难。本文通过某电厂工程灌注桩现场静载试验,研究了砂土地基中桩身沉降随荷载变化规律,分析了桩身轴力随地层深度变化特征及不同土层的桩侧摩阻力。设计钻孔灌注桩桩径为800mm,桩长为47.2m,桩身混凝土强度等级为C35,桩身穿过9层土层,由现场3根桩静载试桩结果可知,荷载与沉降关系呈非线性,Q-s曲线分为弹性阶段、弹塑性阶段和整体破坏3个阶段, 15m深度以下的粉细砂层侧摩阻力对桩身轴力影响较大, 15m以上粉质黏土和淤泥质土对桩轴力影响较小。根据Q-s曲线确定单桩极限载荷约为4800~5400kN,平均值为5201kN,可满足设计要求,地基中下部砂土层承载力较大,砂土侧摩阻力大于黏性土的侧摩阻力,最大可达到70kPa。所得结论可为该类地基进一步的理论研究及工程设计提供有益的参考。  相似文献   

5.
荷载作用下砂粉土动水力特性与细颗粒迁移研究是分析振动液化、翻浆冒泥等自然或工程灾变过程细观致灾机制和演化机制的基础与关键。利用自主研制的试验系统,开展了模拟列车动-静组合荷载作用下饱和砂粉土动水力特性及细粒迁移机制试验。试验结果表明:动-静组合荷载作用下试样的轴向变形呈现出台阶式变化特点;试样的总应力分布随着深度的增加表现出显著的指数减小趋势;孔隙水压力反复经历了动荷载作用下的累积与静荷载作用下的消散过程,并且在该过程中轴向孔隙水压力梯度逐渐对孔隙水形成"抽吸"作用,促使细颗粒产生迁移和集聚。通过分析试样不同层位深度处3种粒径组颗粒含量及有效粒径d_(10)的变化规律,研究了动-静组合荷载作用对饱和砂粉土中细颗粒发生层间迁移流动的影响机制。  相似文献   

6.
荷载作用下砂粉土动水力特性与细颗粒迁移研究是分析振动液化、翻浆冒泥等自然或工程灾变过程细观致灾机理和演化机制的基础与关键。通过开展模拟列车动-静组合荷载作用下饱和砂粉土动水力特性及细粒迁移机制试验,试验结果表明:动-静组合荷载作用下试样的轴向变形呈现出台阶式变化特点;试样的总应力分布随着深度的增加表现出显著的指数减小趋势;孔隙水压力反复经历了动荷载作用下的累积与静荷载作用下的消散过程,并且在该过程中轴向孔隙水压力梯度逐渐对孔隙水形成“抽吸”作用,促使细颗粒产生迁移和集聚。进一步通过分析试样不同层位间细颗粒含量的组成变化,研究了动-静组合荷载作用对饱和砂粉土中细颗粒发生层间迁移流动的影响规律。  相似文献   

7.
运用标贯法和seed简化方法对坝基的抗震液化进行了分析判别,发现坝基中粉砂和细砂层存在严重液化问题,中砂层局部存在液化问题,液化深度一般为7~9m,最大液化深度可达13.2m。依据坝坡稳定分析结果,确定上、下游坝脚内15m,坝脚外5m为坝基液化处理范围,粉砂、细砂层为主要处理地层。在实际防治工作中,采用振冲碎(砂)石桩或振动沉管砂石桩,结合水平排水对坝基的地震液化进行处理。处理后对各区砂土层的密实度及饱和砂土的地震液化进行检验,结果表明处理厚的坝基基本上达到了基础处理的目的。  相似文献   

8.
梁小丛  陈平山  刘志军  王永志  朱明星 《岩土力学》2023,(11):3173-3181+3212
工程现场珊瑚礁砂场地主要以珊瑚砂、砾组成的宽级配珊瑚礁砂,其砾粒含量分布从20%~90%,其液化特性与普通石英砂有较大区别,如仍采用现行液化判别方法评估珊瑚礁砂场地液化潜势,则容易导致工程场地的抗液化处理设计不经济或无法满足要求。以中国南海岛礁和东帝汶珊瑚礁砂为研究对象开展了原级配大动三轴试验分析,建立了基于抗液化强度(cyclic resistance ratios,简称CRR)与相对密实度Dr关系液化判别方法,并通过离心机振动试验进行对比分析。结果表明,当采取相同地震动工况时,由动三轴试验产生的超孔压比相比模型试验超孔压比大;当持时增加到30周时(对应震级8级),土体液化深度达20m,有效证明了珊瑚礁砂场地遭遇强地震动时具有液化潜在风险。此外,通过液化判别计算,验证了基于CRR-Dr关系的液化判别方法准确率达82.5%,且判别不一致工况的判别结果偏保守,进一步验证了此方法可应用于工程抗液化设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号