首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulations of two-component (stars + gas) self-gravitating galactic disks show that the interstellar gas can significantly affect the dynamical evolution of the disk even if its mass fraction (relative to the total galaxy mass) is as low as several percent. Aided by efficient energy dissipation, the gas becomes gravitationally unstable onlocal scale and forms massive clumps. Gravitational scattering of stars by these clumps leads to suppression of bar instability usually seen in heavy stellar disks. In this case, gas inflow towards the galactic center is driven by dynamical friction which gas clumps suffer instead of bar forcing.  相似文献   

2.
A deep H I survey with the VLA of the spiral galaxy NGC 2403 has revealed the existence of a thick, low density layer of neutral gas surrounding the thin ‘cold’ disk. This layer has a mean rotation velocity 25–50 km s-1 lower than that of the disk and a 10–20 km s-1inflow towards the centre of the galaxy. In the central parts there are velocity differences from rotation of up to 150 km s-1.Chandra observations of NGC 2403 show a diffuse, hot X-ray emitting gas component with a temperature of a few 106 K. These results point at galactic fountain type of flows between disk and halo. ‘Halo’ gas with similar characteristics has also been observed in other spiral galaxies(e.g. NGC 6946, NGC 891). Such gas is probably similar to the IVCs and to some of the HVCs of the Milky Way.  相似文献   

3.
Multicolor BVRI surface photometry of the low-luminosity (M V ≈?18m) spiral galaxy NGC 4136 is presented. The photometric parameters of its components and the color distribution over the galactic disk are estimated. The color indices and the corresponding effective ages are determined for the brightest star-forming regions. The disk-to-dark halo mass ratio is derived from the measured rotation curve of the galaxy. The disk mass dominates within the optical boundaries of the galaxy, so its disk can be considered as a self-gravitating system.  相似文献   

4.
We use a 2-dimensional self consistent N-body simulation code in order to investigate the evolution of spiral structure in a disk galaxy caused by one small companion galaxy orbiting in elliptical orbit around the main disk galaxy. In all cases one can see spiral arms forming in the disk of the main galaxy. Our numerical results suggest that there is a connection between the shape of the spiral arms and the eccentricity of the companion's orbit. We also examine the maximum density distribution on the spiral arms and the influence of the companion on the velocity RMS of the stars that form the disk of the main galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We interpret the puzzling-ray bursts as emitted by cooling sparks from the surface of spasmodically accreting, old neutron stars. Their spiky, anisotropic radiation is oriented w.r.t. the galactic disk via interstellar accretion, whose orbital angular momentum tends to counteralign with the galactic spin; in this way, larger source numbers in directions of the galactic disk are compensated by smaller beaming probabilities, resulting in a near-isotropic arrival distribution, as observed by BATSE. The source distances range between 10 pc and 500 pc. Their radiated energies are of order 1035 erg, corresponding to accreted clumps (blades) of typical mass 1015 g per burst. Magnetic surface field strengths range between 1010 and 1012 G, somewhat weaker than those of newborn neutron stars.  相似文献   

6.
The spiral structure of the inner parts of the Galaxy is studied using 21 cm line data and stellar data. To study the neutral hydrogen distribution in the galactic layer a parameter =(dV/dr) proportional to the mean densities is calculated using a first approximation for the velocity gradients due to differential rotation.The obtained distribution (R, Z) shows spiral features completely consistent with the early star distribution and with the Hii regions. The corrugation effect of the galactic layer is observed in all the studied zones in neutral hydrogen and in the distribution of the OB stars in the Carina zone.The pattern obtained indicates four spiral arms for the inner parts of the Galaxy, three of which are identified also in the stellar data (arms -I, -II, and -III) and the more distant -IV in Hii regions.The local arm according to the stellar data of Kilkennyet al. forms a feature completely similar to the arms -I and -II and there are no indications that this arm is a special material branch between two main spiral arms as has been supposed in order to conciliate the neutral hydrogen pattern with the stellar distribution.The pitch angles for the spiral arms are approximately 13°–17°.The observed wave form distribution of the hydrogen cloud layer is completely consistent with the theoretical predictions of Nelson (1976) but there are no indications of such an effect in the intercloud hydrogen. The corrugated cloud layer has a width of 100 pc, a wave amplitude of 70 pc, and a wavelength which grows with the galactic center distance (approx. 2 kpc in the zones next to the galactic nucleus and 2.6–3.0 kpc in the zones next to the Sun). To each wavelength correspond two spiral arms. The spiral features in our Galaxy show characteristics quite similar to the features in the Andromeda nebula, not only in the component materials (neutral hydrogen, Hii regions and possibly also dust and stars) but also in their kinematics.  相似文献   

7.
Observations of the pair of galaxies VV 330 with the SCORPIO multimode instrument on the 6-m Special Astrophysical Observatory telescope are presented. Large-scale velocity fields of the ionized gas in Hα and brightness distributions in continuum and Hα have been constructed for both galaxies with the help of a scanning Fabry-Perot interferometer. Long-slit spectroscopy is used to study the stellar kinematics. Analysis of the data obtained has revealed a complex structure in each of the pair components. Three kinematic subsystems have been identified in UGC 5600: a stellar disk, an “inner gas ring” turned with respect to the disk through ~80°, and an outer gas disk. The stellar and outer gas disks are noncoplanar. Possible scenarios for the formation of the observed multicomponent kinematic galactic structure are considered, including the case where the large-scale velocity field of the gas is represented by the kinematic model of a disk with a warp. The velocity field in the second galaxy of the pair, UGC 5609, is more regular. A joint analysis of the data on the photometric structure and the velocity field has shown that this is probably a late-type spiral galaxy whose shape is distorted by the gravitational interaction, possibly, with UGC 5600.  相似文献   

8.
为了避开旧物质臂理论中旋臂的缠绕困难,本文提出了旋涡星系的循环假设,并在文中提供了旋涡星系的双臂、气体层反卷、银河系中旋臂物质径向向内的速度分量和棒旋星系中棒物质沿着棒向内的流动等观测证据,进而还尝试利用此循环假设去解释旋臂物质的平自转曲线和棒旋星系的棒结构等的成因。  相似文献   

9.
On a plate obtained with the 2-m RC telescope at the Bulgarian National Observatory about 1400 stars in the spiral arm S4 of the Andromeda galaxy were measured. The limit of completeness is 20 . m 2 (B magnitudes). In the central part of S4 (Figure 3) a pronounced gradient of star luminosity and density is found (Figures 6 and 7a). Here the stars become fainter at about 2 m and their surface density decreases tenfold at the distance 1 kpc from the inner edge of the arm. We have interpreted the decline of star maximum brightness from this edge as age gradient and have evaluated from it the velocity of star formation propagation across the arm, which is about 60 km s–1. If the Andromeda galaxy has trailing spiral arms and the pitch angle of S4 is about 25° in its central part, the pattern velocity p7–14 km s–1 kpc–1. This value is close to that obtained earlier with the help of the Cepheids in the same part of S4 (Efremov, 1980). The absence of a pronounced asymmetry in the star distribution across the arm in the OB82 region may be connected with the position of the strongest dust lanes in front of the stellar spiral arm here. We have stressed that in one part of the same spiral arm there may be a pronounced age gradient, and there may be no such gradient in the near-by one. In spite of the known difficulties in understanding the structure of the Andromeda galaxy it is possible to draw some conclusions which are important for the theory of spiral arms. The detailed investigations of the nearest galaxies are, therefore, most useful for understanding the spiral structure nature.  相似文献   

10.
The problem of determining the pattern of gas motions in the central regions of disk spiral galaxies is considered. Two fundamentally different cases—noncircular motions in the triaxial bar potential and motions in circular orbits but with orientation parameters different from those of the main disk—are shown to have similar observational manifestations in the line-of-sight velocity field of the gas. A reliable criterion is needed for the observational data to be properly interpreted. To find such a criterion, we analyze two-dimensional nonlinear hydrodynamic models of gas motions in barred disk galaxies. The gas line-of-sight velocity and surface brightness distributions in the plane of the sky are constructed for various inclinations of the galactic plane to the line of sight and bar orientation angles. We show that using models of circular motions for inclinations i>60° to analyze the velocity field can lead to the erroneous conclusions of a “tilted (polar) disk” at the galaxy center. However, it is possible to distinguish bars from tilted disks by comparing the mutual orientations of the photometric and dynamical axes. As an example, we consider the velocity field of the ionized gas in the galaxy NGC 972.  相似文献   

11.
In a previous paper (hereafter referred to as Paper I) we have tried to show that superdense cores in the nuclei of disk galaxies can be formed by accretion of gas ejected by the evolved stars which populate the central bulge of these galaxies. Solving the equations for radial flow of a magnetized gas, we found that the accretion of an explodable mass at the core can be achieved over a time-scale ranging from a few times 107 and a few times 108 yr. It was shown, however, that the accretion process is seriously inhibited if the gas possesses sufficient rotational velocity but lacks any dissipative, mechanism within the system. Since rotational velocity is an observed parameter of the stars which shed the gas to be accreted, one must consider the existence of some dissipative force in it in order that the accretion process may be efficient. In the present paper, therefore, we have solved the problem of the flow of a rotating, viscous (variable), magnetized gas. With plausible assumptions regarding some of the parameters involved, the time-scale for the accretion of an explodable mass (109 M ) at the core again turns out to be ranging between a few times 107 and a few times 108yr. Such time-scale has been proposed by several authors as that for repeated explosions in nuclei of these galaxies. It has also been proposed by many authors that the spiral arms are generated and destroyed in disk galaxies over the same time-scale. Our solution also yields a nearly linear rotational velocity law which is usually observed in the central regions of these galaxies.  相似文献   

12.
We have used the impulsive approximation technique to numerically estimate the effect of dynamical friction on the motion of a supermassive black hole (mass 109 M ) through a galaxy (mass=1011 M ) which has recoiled from the center of the latter as a result of anisotropic emission of gravitational radiation or asymmetric plasma emission. We find the effect to be minimal for recoil taking place at a velocity larger than that of escape at the center of the galaxy. There is a certain critical velocity of ejection (slightly larger than the central escape velocity) at which the black hole must be ejected for the recoil to be successful. Otherwise, dynamical friction becomes relatively pronounced and damped oscillatory motion of the black hole in the potential well of the galaxy ensues. The phenomenon of high-velocity recoil although rare, can be astrophysically spectacular in view of the fact that the black hole would carry a substantial amount of gaseous material as well as a very large number of galactic stars. Some recent observations are cited where the recoil phenomenon might be applicable.  相似文献   

13.
The problem of the change in internal energy of a colliding galaxy due to tidal effects is considered, assuming that the galaxies may be regarded as spherical stellar systems whose over-all structure remains unchanged during the collision and that the stars move in circular orbits. The numerical estimates thus made for the energy gained by the stars during the collision are compared with those derived on the basis of the assumption that the motions of the stars may be neglected during the encounter (the impulsive approximation) to test the adequacy of the latter approximation. If the two galaxies are of 1011 M , of radii 10 kpc and of mass distribution that of a polytrope of indexn=4; and if the relative distance and velocity at their closest approach are taken as 2 kpc and 1000 km/sec respectively, the mass of escaping stars from a galaxy is estimated to be roughly 4% of the total mass of the galaxy and the total increase in the internal energy of a galaxy during the collision due to the tidal acceleration of all its stars is equal in magnitude to approximately 25% of its initial internal energy, about one-fifth of which is associated with the escaping stars.  相似文献   

14.
15.
A model of galaxy with an active nucleus is investigated; The cloud in the galactic disc accretes on the core. The core temperature and hence the core luminosity becomes high because of the kinetic energy release by the accreting gas cloud. Then the gas and dust in the core is ejected outward by the radiation pressure from resonance line scattering, forms a sort of halo around the core and subsequently falls on the galactic plane. The gas and dust subsisted from star formation accretes again on the nucleus to provoke another explosion. So these processes are cyclic throughout the life of the galaxy.According to this model, the period of explosion depends only on the temperatureT of the system in such a manner as(y)=2.7×106 T 1/2. This relation can well explain the observed time scales for galactic explosions. On the other hand, the time dependence of heavy elements abundance, of the redshift of distant galaxy and of galactic luminosity is investigated. The redshift dependence of galactic distribution is also examined. It has become clear that this model can lead the inconsistent results with observational facts. The other problems concerning with galaxies or metagalaxies should be treated along this line.  相似文献   

16.
I use the fact that the radiation emitted by the accretion disk of supermassive black hole can heat up the surrounding gas in the protogalaxy to achieve hydrostatic equilibrium during the galaxy formation. The correlation between the black hole mass M BH and velocity dispersion σ thus naturally arises. The result generally agrees with empirical fittings from observational data, even with M BH ≤106 M . This model provides a clear picture on how the properties of the galactic supermassive black holes are connected with the kinetic properties of the galactic bulges.  相似文献   

17.
Available velocity dispersion estimates for the old stellar population of galactic disks at galactocentric distances r?2L (where L is the photometric radial scale length of the disk) are used to determine the threshold local surface density of disks that are stable against gravitational perturbations. The mass of the disk Md calculated under the assumption of its marginal stability is compared with the total mass Mt and luminosity L B of the galaxy within r=4L. We corroborate the conclusion that a substantial fraction of the mass in galaxies is probably located in their dark halos. The ratio of the radial velocity dispersion to the circular velocity increases along the sequence of galactic color indices and decreases from the early to late morphological types. For most of the galaxies with large color indices (B–V)0>0.75, which mainly belong to the S0 type, the velocity dispersion exceeds significantly the threshold value required for the disk to be stable. The reverse situation is true for spiral galaxies: the ratios Md/LB for these agree well with those expected for evolving stellar systems with the observed color indices. This suggests that the disks of spiral galaxies underwent no significant dynamical heating after they reached a quasi-equilibrium stable state.  相似文献   

18.
We present our spectroscopic observations of the galaxy NGC 7468 performed at the 6-m Special Astrophysical Observatory telescope using the UAGS long-slit spectrograph, the MPFS multi-pupil fiber spectrograph, and the IFP scanning Fabry-Perot interferometer. We found no significant deviations from the circular rotation of the galactic disk in the velocity field in the regions of brightness excess along the major axis of the galaxy (the putative polar ring). Thus, these features are either tidal structures or weakly developed spiral arms. However, we detected a gaseous disk at the center of the galaxy whose rotation plane is almost perpendicular to the plane of the galactic disk. The central collision of NGC 7468 with a gas-rich dwarf galaxy and their subsequent merging seem to be responsible for the formation of this disk.  相似文献   

19.
Theories of galactic structure are reviewed briefly before comparing them with recent observations. Also reviewed is the evidence for an intergalactic magnetic field and its possible effects on gas concentrations and patterns of star creation, including spiral arms. It is then shown that normal spiral galaxies may be divided into the M51-type and others. The rare M51-type have Hi gas arms coincident with unusually filamentary and luminous optical arms; they also have a companion galaxy. The remaining great majority of spirals have no well-defined gas arms and their optical arms are irregular, broader and less luminous; they have no companion galaxy. It appears that without exception the half-dozen or so galaxies whose structures appear to support the density-wave theory show one or more of the characteristics of the rare type of spiral, and that the three principal confirmations of the spiral-wave idea (M51, M81, M101) have companions which may account for their arms. Toomre has rejected this idea on the grounds that his models do not agree with the observed structures. It is shown that these models are inadequate in two major respects, and when replaced by magneto-tidal models using non-uniform gas disks one might expect agreement. The original hydromagnetic model of spiral arms is now reserved for non-interacting galaxies, of which M33 might be taken as a prototype. The model predicts broad or massive optical arms and no corresponding arms of neutral hydrogen, as observed.  相似文献   

20.
We present the results of our stellar photometry and spectroscopy for the new Local Group galaxy VV124 (UGC4879) obtainedwith the 6-m BTAtelescope. The presence of a fewbright supergiants in the galaxy indicates that the current star formation process is weak. The apparent distribution of stars with different ages in VV 124 does not differ from the analogous distributions of stars in irregular galaxies, but the ratio of the numbers of young and old stars indicates that VV 124 belongs to the rare Irr/Sph type of galaxies. The old stars (red giants) form the most extended structure, a thick disk with an exponential decrease in the star number density to the edge. Definitely, the young population unresolvable in images makes a great contribution to the background emission from the central galactic regions. The presence of young stars is also confirmed by the [OIII] emission line visible in the spectra that belongs to extensive diffuse galactic regions. The mean radial velocity of several components (two bright supergiants, the unresolvable stellar population, and the diffuse gas) is υ h = −70 ± 15 km s−1 and the velocity with which VV 124 falls into the Local Group is υ LG = −12 ± 15 km s−1. We confirm the distance to the galaxy (D = 1.1 ± 0.1 Mpc) and the metallicity of red giants ([Fe/H] = −1.37) found by Kopylov et al. (2008). VV 124 is located on the periphery of the Local Group approximately at the same distance from M31 and our Galaxy and is isolated from other galaxies. The galaxy LeoA nearest to it is 0.5 Mpc away.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号