首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Contents of major and most trace elements of granitoids in three intrusions associated with the Cretaceous Independence volcanic complex, Montana, correlate well with SiO2. Major-element contents in granitoids in each intrusion are accurately modeled as mixtures of minimum melts and phenocryst assemblages (presumably restite). Restite assemblages are hypersthene+augite+plagioclase, hornblende+plagioclase, and biotite+plagioclase+quartz. Residues of melting are granulite or amphibolite. Melts in two of the bodies were LREE-enriched but unfractionated in MREE and HREE. REE patterns are consistent with residues dominated by pyroxene or amphibole and feldspar. Initial 207Pb/204Pb and 206Pb/204Pb of granitoids define a line interpreted as a secondary isochron established during crustal homogenization 3.3 Ga ago. The relatively low of source rocks (8.25) suggests that they did not spend long in U-rich environments. Source regions had variable trace element patterns; Th/Pb and U/Pb were correlated, Rb/Sr and Sm/Nd moderately well correlated, but Rb/Sr and U/Pb were decoupled. This is consistent with poor correlation of Rb, Sr and Ba with SiO2 in some granitoids and may suggest that minor phases that concentrate these elements were inhomogeneously distributed in source regions. The source probably consisted of LREE-rich, Rb-poor metamorphic rocks. Archean amphibolites, exposed in the Beartooth Mountains, are similar to the postulated source materials. They contain plagioclase, hornblende, minor quartz, biotite, and muscovite, and have low Rb/Sr and high LREE/HREE. Certain trace-element characteristics of the granitoids indicate that the deep crust in this part of Montana may be dominated by metamorphosed mafic-intermediate lavas that formed on the sea-floor. Metapelites, intercalated with amphibolites at the surface, were rare in granitoid source regions. This buried supracrustal pile was isotopically homogenized 3.3 Ga ago. Although some material melted 2.7 Ga ago to form granites that dominate the exposed basement, enough remained fertile that heating by mantle-derived magmas 85–90 Ma ago produced the granitic rocks at Independence.  相似文献   

2.
《Lithos》2007,93(1-2):17-38
A suite of schists, gneisses, migmatites, and biotite granitoids from the Puerto Edén Igneous and Metamorphic Complex (PEIMC) and biotite–hornblende granitoids of the South Patagonian batholith (southern Chile) has been studied. For that purpose, the chemistry of minerals and the bulk rock composition of major and trace elements including Rb–Sr and Sm–Nd isotopes were determined. Mineralogical observations and geothermobarometric calculations indicate high-temperature and low-pressure conditions (ca. 600–700 °C and 3 to 4.5 kbar) for an event of metamorphism and partial melting of metapelites in Late Jurassic times (previously determined by SHRIMP U–Pb zircon ages). Structures in schists, gneisses, migmatites and mylonites indicate non-coaxial deformation flow during and after peak metamorphic and anatectic conditions. Andalusite schists and sillimanite gneisses yield initial 87Sr/86Sr ratios of up to 0.7134 and εNd150 values as low as − 7.6. Contemporaneous biotite granitoids and a coarse-grained orthogneiss have initial 87Sr/86Sr ratios between 0.7073 and 0.7089, and εNd150 values in the range − 7.6 to − 4.4. This indicates that metamorphic rocks do not represent the natural isotopic variation in the migmatite source. Thus, a heterogeneous source with a least radiogenic component was involved in the production of the biotite granitoids. The PEIMC is considered as a segment of an evolving kilometre-sized and deep crustal shear zone in which partial melts were generated and segregated into a large reservoir of magmas forming composite plutons in Late Jurassic times. A biotite–hornblende granodiorite and a muscovite–garnet leucogranite show initial 87Sr/86Sr ratios of 0.7048 and 0.7061, and εNd100 values of − 2.6 and − 1.8, respectively, and are thus probably related to Early Cretaceous magmas not involved in the anatexis of the metasedimentary rocks.  相似文献   

3.
Two major episodes are evident in the metamorphic and igneous Precambrian basement of the Llano Uplift, central Texas. Dynamothermal metamorphism was accompanied by minor basaltic and tonalitic syntectonic plutonism. This was followed by a second period of thermal overprinting accompanying emplacement of high-K2O, high-level major granite plutons. Extensive isotopic age work by Zartman, published in the mid-1960s, suggests that development of the basement complex, spanning an interval of 150 m.y. or more, began with deposition of Valley Spring Gneiss (the lowest unit) and terminated about 1,050 m.y. ago with final postmetamorphic cooling (indicated by retention ages of Ar and Sr in biotite). We have supplemented these data with more than 50 new K-Ar and Rb-Sr analyses.Two foliated plutons in the southeast are 1,167±12m.y. (2) old, with distinctly different initial 87Sr/86Sr ratios. Field relationships and isotopic data indicate that these plutons are the earliest yet known in the Uplift. Metamorphosed basalt dikes and gabbro bodies were emplaced immediately preceding and following the syntectonic plutons. Eleven of these rocks had extremely uniform initial 87Sr/ 86Sr=0.7029±0.0005. A Rb-Sr whole-rock isochron of the unfoliated Enchanted Rock pluton indicates an age of 1,048±34 m.y. with initial 87Sr/86Sr= 0.7048±0.0007. One of the northern unfoliated granites, the Lone Grove pluton, gives a whole-rock isochron age of 1,056±12 m.y., with initial 87Sr/86Sr = 0.7061±0.0003. All of the intrusive rocks have initial 87Sr/86Sr ratios consistent with a source in the mantle or lower crust, but not in ancient remobilized continental crust. Six K-Ar hornblende ages from metabasalts are 1,078±19 m.y. (1), in general agreement with K-Ar and Rb-Sr mineral ages elsewhere in the eastern Llano Uplift. A metasedimentary Valley Spring Gneiss sample from the western Uplift has a whole rock-muscovite Rb-Sr age of 1,129±9 m.y. Field and isotopic data are now sufficiently numerous to permit a moderately detailed reconstruction of the Precambrian history of the area.  相似文献   

4.
Zircon U–Pb geochronology results indicate that the John Muir Intrusive Suite of the central Sierra Nevada batholith, California, was assembled over a period of at least 12 Ma between 96 and 84 Ma. Bulk mineral thermochronology (U–Pb zircon and titanite, 40Ar/39Ar hornblende and biotite) of rocks from multiple plutons comprising the Muir suite indicates rapid cooling through titanite and hornblende closure following intrusion and subsequent slow cooling through biotite closure. Assembly of intrusive suites in the Sierra Nevada and elsewhere over millions of years favors growth by incremental intrusion. Estimated long-term pluton assembly rates for the John Muir Intrusive Suite are on the order of 0.001 km3 a−1 which is inconsistent with the rapid magma fluxes that are necessary to form large-volume magma chambers capable of producing caldera-forming eruptions. If large shallow crustal magma chambers do not typically develop during assembly of large zoned intrusive suites, it is doubtful that the intrusive suites represent cumulates left behind following caldera-forming eruptions.  相似文献   

5.
Komatiites of the Tjakastad Subgroup of the Onverwacht Group (S. Africa) were dated by the Sm/Nd method. A whole-rock isochron yields an age of 3.56±0.24 (2) AE, with initial 143Nd/144Nd ratio of 0.50818±23 (2), corresponding to Nd(T)= + 1.9±4.5. This age is interpreted as the time of initial Onverwacht volcanism. This result agrees with earlier Sm/Nd data of Hamilton et al. (1979) and is consistent with the Rb-Sr result of Jahn and Shih (1974).Komatiites may be divided into 3 groups based on the typology of heavy REE distributions (Jahn and Gruau 1981). According to this scheme, the Onverwacht komatiites of the present study belong to two groups: the predominant Group II rocks showing (Gd/Yb)N1.4, CaO/Al2O3 = 1.33, Al2O3/TiO210.6; and the subordinate Group III rocks with (Gd/Yb)N<1.0; CaO/Al2O30.6 and A12O3/ TiO240. This contrasting feature is best explained by garnet fractionation within the mantle sources.Younger komatiites (2.7 AE) from Finland, Canada, Rhodesia, and Australia have (Gd/Yb)N1.0, CaO/ Al2O3<1.1 and Al2O3/TiO221 based on 58 analyses. These ratios are nearly chondritic or of the bulk earth value (Anders 1977). It appears that some late Archean komatiites are different in chemistry from many early Archean komatiites. This may imply that the upper mantle chemistry has evolved through Archean times. However, the age connotation of the chemical parameters, such as CaO/Al2O3, (Gd/Yb)N or Al2O3/TiO2 ratio has not been firmly established. The characteristic high CaO/Al2O3 or (Gd/Yb)N ratios in many Onverwacht Group rocks can also be explained as a result of local short-term mantle heterogeneity.  相似文献   

6.
The Sanandaj-Sirjan Zone (SSZ) trends northwestward in western Iran on the Precambrian to Paleozoic basement and exposes abundant I-type granitoids and calc-alkaline volcanic rocks that were most active during the Late Jurassic to Upper Cretaceous. The petrogenesis of the granitoids and associated volcanic rocks has been widely related to Neotethyan subduction beneath the Iranian plate. We report a geochronological and geochemical study of the Suffi abad granite (SLG) body that crops outs southeast of Sanandaj within the SSZ and is mainly composed of K-feldspar + quartz + plagioclase ± hornblende. The SLG, which shows a high-K calc-alkaline affinity, has LA-ICPMS zircon U–Pb ages ranging between 149 ± 2 and 144 ± 3 Ma and initial 87Sr/86Sr of ∼0.7024–0.7069 and 143Nd/144Nd of ∼0.5125–0.5127. These value correspond to an ?Nd (145 Ma) of +1.5 and +4.9, suggesting that the SLG originated from the juvenile crust or depleted mantle with a young TDM (650–900 Ma) over the subduction zone beneath the SSZ. Zircon saturation temperatures suggest that crystallization of the zircons, or emplacement of the host magmas, occurred at 560–750 °C, consistent with an intergrowth texture of K-feldspar and quartz that implies crystallization around the K-feldspar-quartz eutectic at lower temperatures. Overall, geochemical data suggest that crystallization of the hornblende and plagioclase played a role in magma differentiation. These data allow us to conclude that the high-K SLG did not originate directly from the juvenile mantle source as do most I-type, calc-alkaline granitoids, but more likely was produced from the partial melting of pre-existing I-type granitoids in the upper continental crust under low pressure conditions.  相似文献   

7.
The Ivrea zone represents a tilted cross section through deep continental crust. Sm-Nd isotopic data for peridotites from Baldissero and Balmuccia and for a suite of gabbros from the mafic formation adjacent to the Balmuccia peridotite provide evidence for an event of partial melting 607±19 Ma ago in an extended mantle source with 607 Nd =+0.4±0.3. The peridotites are interpreted as the corresponding melt residue, the lower part of the mafic formation as the complementary melts which underwent further differentiation immediately after extraction. The Finero body represents a complex with layers of phlogopite peridotite, hornblende peridotite, and amphibole-rich gabbro. The isotopic signatures fall into two groups: (1) highly radiogenic Nd and low-radiogenic Sr characterize the phlogopite-free, amphibole-rich rocks, whereas (2) low-radiogenic Nd and highly radiogenic Sr is found in ultramafics affected by phlogopite metasomatism. Phlogopite metasomatism in the Ivrea zone is dated by a Rb-Sr whole rock isochron yielding 293±13 Ma. It was fed by K-rich fluids which were probably derived from metasediments. The high initial 293 Nd value of about +7.5 for phlogopite-free samples indicates a high time-integrated Sm/Nd ratio in the Finero protolith 293 Ma ago. Sm-Nd analyses of metapelites from the paragneiss series yield Proterozoic crustal residence ages of 1.2 to 1.8 Ga. Internal Sm-Nd isochrons for three garnetiferous rocks show that closure of garnet at temperatures around 600° C or even lower occurred about 250 Ma ago.  相似文献   

8.
Discriminant analysis was performed for representative sets of igneous rocks with adakitic geochemical signatures (granitoids of Archean tonalite–trondhjemite–granodiorite suites, island-arc adakites, and adakites and adakitic granitoids of collisional to postcollisional geodynamic settings). It was shown that the granitoids of Archean tonalite–trondhjemite–granodiorite suites are significantly different from islandarc adakites, as well as from collisional to postcollisional adakites and adakitic granitoids. The following discriminant function was proposed for the geodynamic classification of island arc and collisional-postcollisional adakites and adakitic granitoids on the basis of chemical composition: DF3 =–1.69324TiO2–0.25537Al2O3–0.21269FeO* + 0.06076MgO–0.09796CaO + 0.47377Na2O + 0.29270K2O + 3.57821P2O5 + 0.00431Rb + 0.00036Sr + 0.03119Y + 0.00006Zr + 0.01088Nb–0.00048Ba + 0.01366La + 0.0004Ce + 0.02319Nd–0.18584Sm + 1.29135Eu–0.62229Gd + 0.3819Dy + 2.06583Er–2.62769Yb + 1.6464.  相似文献   

9.
Mafic microgranular enclaves (MMEs) in host granitoids can provide important constraints on the deep magmatic processes. The Oligocene-Miocene granitoid plutons of the NW Anatolia contain abundant MMEs. This paper presents new hornblende Ar-Ar ages and whole-rock chemical and Sr-Nd isotope data of the MMEs from these granitic rocks. Petrographically, the MMEs are finer-grained than their host granites and contain the same minerals as their host rocks (amphibole + plagioclase + biotite + quartz + K-feldspar), but in different proportions. The Ar-Ar ages of the MMEs range from 27.9 ± 0.09 Ma to 19.3 ± 0.01 Ma and are within error of their respective host granitoids. The MMEs are metaluminous and calc-alkaline, similar to I-type granites. The Sr-Nd isotopes of MMEs are 0.7057 to 0.7101 for 87Sr/86Sr and 0.5123 to 0.5125 for 143Nd/144Nd, and are similar to their respective host granitoids. These lithological, petrochemical and isotopic characteristics suggest that the MMEs in this present study represent chilled early formed cogenetic hydrous magmas produced during a period of post-collisional lithospheric extension in NW Anatolia. The parental magma for MMEs and host granitoids might be derived from partial melting of underplated mafic materials in a normally thickened lower crust in a post-collisional extensional environment beneath the NW Anatolia. Delamination or convective removal of lithospheric mantle generated asthenospheric upwelling, providing heat and magma to induce hydrous re-melting of underplated mafic materials in the lower crust.  相似文献   

10.
Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6–10% TiO2) and the hornblende (3–6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages:
  1. Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene±Biotite +more-sodic Plagioclase
  2. Hornblende+Orthopyroxene±Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase
The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature.  相似文献   

11.
Initial Nd isotopic ratios are reported for 23 samples representing magmatic crustal components in the Svecokarelian terrain of South Finland. U-Pb zircon ages are determined for all geologic units, involving 21 separate upper concordia intercept ages based on more than 100 UP-b analyses. The ages range for all the rocks from 1.90 Ga for primitve plutonic rocks to 1.79 Ga for post-tectonic intrusions. The well-known gabbro-diorite-tonalite-trondhjemite association of the Kalanti district appears to consist of components with different ages: trondhjemites are probably 1.90 Ga or older, diorites/tonalites belong to the main Svecokarelian plutonic eposide at 1.89-1.87 Ga, and at least some gabbro has a post-tectonic age of 1.80 Ga. Nd (T) values range between +2 to +3 for meta-andesites, large gabbros and primitive granitoids to –0.5 for more evolved granitoids. A magma source with Nd of at least +2 to +3 was available during 1.90 to 1.87 Ga, but evolved granitoids have Nd close to zero. The preferred interpretation is that depleted mantle with Nd=+4 to +5 was present beneath the Svecokarelian crust forming during 1.9-1.8 Ga, and that all rocks have been affected more or less by addition of an Archean crustal component with Nd=–9 to –13. The primitive rocks with Nd=+2 to + 3 were only slightly affected, while granitoids with Nd close to zero include a 10% Archean component. The widespread nature of the Archean addition and the distance of up to 500 km to actual exposed Archean crust make it most realistic that the Archean component was added to the form of sediments delivered by subducting Proterozoic ocean crust. The plutonic rocks of the Finnish Svecokarelian crust in areas away from Archean cratons consist of 90% newly mantle-derived material.  相似文献   

12.
The Roaring River Complex, Superior Province, Canada, containsrocks varying from diorite and monzodiorite to granodioritewhich are characterized by high mg-numbers (0.43–0.62),high abundances of Cr (150 ppm), Sr (500–2000 ppm), Ba(1000–2500ppm), and P2O5 (0.5 wt.%), low Rb/Sr ratios (001–0.02),and steeply fractionated, subparallel REE patterns (Cen =65–170,Ybn = 3–6) without Eu anomalies. The continuous compositionalvariation of the rock suite provides a basis for testing thevarious processes thought to have been important in the extractionof granodiorite magmas from the mantle during the Archean. Weconsider (1) the relative roles of partial melting, crystallizationfractionation, and other processes; (2) the role of garnet orother phases in controlling the steep REE patterns of the rocks;and (3) the chemical and isotopic composition of the sourceregion. The subparallel and decreasing REE patterns with increasingsilica, and the ten-fold variation and high abundances of Crand Ni within the diorite-granodiorite series are not consistentwith different extents of melting of basic crust. The scatterin bivariate plots for closely spaced samples does not supportsimple two-component mixing or liquid immiscibility. The compositionalvariation can be explained by crystallization differentiation(from 0 to 90%) of monzodioritic magma through separation ofdioritic cumulates containing clinopyroxene, hornblende, biotite,plagioclase, K-feldspar, and accessories. The compatibilityof the REEs resulted principally from crystallization of spheneand apatite. The parental monzodioritic magmas with their high mg-numbers,Ni, and Cr contents were derived from peridotitic source rocks(mg-numbers>0.80) with low Rb/Sr ratios (<0.02) and light-REEenrichment relative to chondrites. The differences in the REEpatterns of monzodiorite samples do not support, nor rule out,garnet in the residue for melting. If the monzodioritic meltswere derivatives of other melts, the parent melts would havebeen similar to high-Mg monzodiorites (‘sanukitoids’)recognized as components of other diorite-granodiorite bodiesin the region. An Rb-Sr whole-rock isochron (n = 25) yields a minimum crystallizationage of 2623 Ma (?19) with initial 87Sr/86Sr = 070134 (?000004;MSWD=l.8). Sm-Nd isotope data for six rocks yield Nd (2623)=+0.8 ?0.3. The isotope data indicate a source region with long-termRb/Sr of 0.02, similar to depleted mantle, and light-REE depletionrelative to chondrites. The peridotite source to the diorite-granodioriteseries became light-REE enriched before melting through theaddition of a light-REE component of a fluid or melt. In generating Archean granodiorite with suitably high mg-numbers,and Ni, Cr, Sr, Ba, P2O5, and light-REE contents, these dataindicate: (1) the importance of crystallization differentiationof high-Mg monzodioritic parent magmas, (2) that the steep REEpatterns may be a characteristic of the source rocks, and (3)light-REE-enriched, peridotitic sources were melting and contributingsiliceous material directly to the Archean crust.  相似文献   

13.
Two “S-type” (pelitic) granite suites from the New England Batholith, N.S.W., have Upper Carboniferous ages, indicating that they predate by 40 m.y. the intrusion of hornblende biotite granites, and are the oldest plutons of the batholith. Mineralogically and geochemically both suites have “pelitic” characteristics, one suite containing an Al-rich biotite, muscovite and cordierite, the other an Al-rich biotite and rare pyrope-almandine garnet. Low initial 87Sr/86Sr ratios of 0.706 for both suites probably reflect the volcanoclastic nature and young age of the sedimentary source of these granites at the time of melting. The age of the suites coincides with the last stages of (Andean type?) volcanism along an andesite/dacite volcanic chain to the west, suggesting an origin for the “S-type” granitic magma by partial melting of deformed sediments marginal to a continental region.  相似文献   

14.
Hornblende- and clinopyroxene-phyric lamprophyre dykes exposed in the Roaring River Complex, Superior Province are alkaline, nepheline-normative, basaltic compositions (>50 wt% SiO2), that range from primitive to fractionated [Mg/(Mg + total Fe)=0.66–0.40; Ni=200–35 ppm], and which have high abundances of light rare earth elements (REE) [(Ce/Yb)n=16–26, Cen=60–300; n = chondrite normalized], Sr (870–1,800 ppm), P2O5 (0.4–1.3 wt%), and Ba (150–900 ppm). Crystal fractionation of the lamprophyres produced coeval gabbro and clinopyroxenite cumulate bodies. A whole-rock Sm–Nd isochron for lamprophyres and gabbro-pyroxenite yields a crystallization age of 2,667±51 Ma Ma (I=0.50929±0.0004; Nd = + 2.3 0.7). Whole-rock Sr isotope data are scattered, but suggest an initial 87Sr/86Sr ratio of 0.7012, similar to bulk Earth. The elevated levels of light REEs and Sr in the lamprophyres were not due to crustal contamination or mixing with contemporaneous monzodioritic magmas, but a result of partial melting of a mantle source which was enriched in these and other large-ion-lithophile elements (LILEs) shortly before melting. The lamprophyres were contemporaneous with mantle-derived, high-Mg, LILE-enriched monzodiorite to granodiorite of the Archean sanukitoid suite. Both suites have concave-downward light REE profiles, suggesting that depleted mantle was common to their source regions, but the higher light REE abundances, higher Ba/La ratios, and lower Nd values (+1.3±0.3) of the parental monzodiorites suggest a more enriched source. The lamprophyres and high-Mg monzodiorites were derived from a mineralogically and compositionally heterogeneous, LILE-enriched mantle lithosphere that may have been part of a mantle wedge above a subducting plate in an arc environment.  相似文献   

15.
《Resource Geology》2018,68(4):395-424
Petrochemical characteristics of Permo‐Triassic granitoids from five regions (i) Mung Loei, (ii) Phu Thap Fah – Phu Thep, (iii) Phetchabun, (iv) Nakon Sawan – Lobburi, and (v) Rayong – Chantaburi along the Loei Fold Belt (LFB), northeastern Thailand were studied. The LFB is a north–south trending 800 km fold belt that hosts several gold and base‐metal deposits. The granitoids consist of monzogranite, granodiorite, monzodiorite, tonalite, quartz‐syenite, and quartz‐rich granitoids. These are composed of quartz, plagioclase, and K‐feldspar with mafic minerals such as hornblende and biotite. Accessory minerals, such as titanite, zircon, magnetite, ilmenite, apatite, garnet, rutile, and allanite are also present. Magnetic susceptibilities in the SI unit of granitoids vary from 6.5 × 10−3 to 15.2 × 10−3 in Muang Loei, from 0.1 × 10−3 to 29.4 × 10−3 in Phu Thap Fah – Phu Thep, from 2.7 × 10−3 to 34.6 × 10−3 in Petchabun, from 2.4 × 10−3 to 14.1 × 10−3 in Nakon Sawan – Lobburi, and from 0.03 × 10−3 to 2.8 × 10−3 in Rayong – Chantaburi. Concentration of major elements suggests that these intermediate to felsic plutonic rocks have calc‐alkaline affinities. Concentration of REE of the granitoids normalized to chondrite displays moderately elevated light REE (LREE) and relatively flat heavy (HREE) patterns, with distinct depletion of Eu. Rb versus Y/Nb and Nb/Y tectonic discrimination diagrams illustrate that the granitoids from Muang Loei, Phu Thap Fah – Phu Thep, Phetchabun, Nakon Sawan – Lobburi, and Rayong – Chantaburi formed in continental volcanic‐arc setting. New age data from radiometric K‐Ar dating on K‐feldspar from granodiorite in Loei and Nakhon Sawan areas yielded 171 ± 3 and 221 ± 5 Ma, respectively. K‐Ar dating on hornblende separated from diorite in Lobburi yielded 219 ± 8 Ma. These ages suggest that magmatism of Muang Loei occurred in the Middle Jurassic, and Nakon Sawan – Lobburi occurred in Late Triassic. Both Nb versus Y and Rb versus (Y + Nb) diagrams and age data indicate that Nakon Sawan – Lobburi granitoids intruded in Late Triassic at Nong Bua, Nakon Sawan province and Khao Wong Phra Jun, Lobburi province in volcanic arc setting. Muang Loei granitoids at the Loei province formed later in Middle Jurassic also in volcanic arc setting. The negative δ34SCDT values of ore minerals from the skarn deposit suggest that the I‐type magma has been influenced by light biogenic sulfur from local country rocks. The Au‐Cu‐Fe‐Sb deposits correlate with the magnetite‐series granitoids in Phetchabun, Nakon Sawan – Lobburi and Rayong – Chantaburi areas. Metallogeny of the Au and Cu‐Au skarn deposits and the epithermal Au deposit is related to adakitic rocks of magnetite‐series granitoids from Phetchabun and Nakon Sawan areas. All mineralizations along the LFB are generated in the volcanic arc related to the subduction of Paleo‐Tethys. The total Al (TAl) content of biotite of granitoids increases in the following order: granitoids associated with Fe and Au deposit < with Cu deposit < barren granitoids. XMg of biotite in granitoids in Muang Loei indicates the crystallization of biotite in magnetite‐series granitoids under high oxygen fugacity conditions. On the other hand, low XMg (<0.4) of biotite in magnetite‐series granitoids in Phu Thap Fah – Phu Thep and Rayong – Chantaburi indicates a reduced environment and low oxygen fugacity, associated with Au skarn deposit (Phu Thap Fah) and Sb‐Au deposit (Bo Thong), respectively. The magnetite‐series granitoids at Phu Thap Fah having low magnetic susceptibilities and low XMg of biotite were formed by reduction of initially oxidizing magnetite‐series granitic magma by interaction with reducing sedimentary country rocks as suggested by negative δ34SCDT values.  相似文献   

16.
Reactions which occur at the lower boundary of the hornblende-hornfels facies and in the so-called pyroxene-hornfels facies were experimentally investigated for an ultrabasic rock at 500, 1000 and 2000 bars H2O pressure.The starting material used was a mixture of natural chlorite, talc, tremolite and quartz such that its composition, except for surplus quartz, corresponded to that of an ultrabasic rock. The atomic ratio Fe2++Fe2+/Mg+Fe3++Fe3+ in the system was 0.16.The lower boundary of the hornblende-hornfels facies was defined by the formation of the orthorhombic amphibole anthophyllite and hornblende according to the following idealized reaction: chlorite+talc+tremolite+quartz hornblende+anthophyllite+H2O In effect, this reaction consists of the two bivariant reactions: chlorite+tremolite+quartz hornblende+anthophyllite+H2O talc+chlorite anthophyllite+quartz+H2OThe equilibrium temperatures obtained for the two reactions in the given system are practically the same and are as follows: 535±10°C at 500 bars H2O pressure 550±20°C at 1000 bars H2O pressure 560±10°C at 2000 bars H2O pressure 580±10°C at 4000 bars H2O pressureAt 2000 bars and higher temperatures within the hornblende-hornfels facies, anorthite is formed in addition to hornblende and anthophyllite, probably according to the following reaction: hornblende1+quartz hornblende2+anthophyllite+anorthite+H2O; because of the formation of anorthite it is to be expected that the hornblende in this case is poorer in aluminium than the hornblende at 500 and 1000 bars. Winkler (1967) suggests renaming the pyroxene-hornfels facies as K-feldspar-cordierite-hornfels facies which, in turn, is subdivided into a lower-temperature orthoamphibole subfacies without orthopyroxene and a higher-temperature orthopyroxene subfacies without orthoamphibole. The orthopyroxene subfacies itself may in its lower temperature part still carry hornblende which finally disappears in the higher temperature part.The appearance of orthopyroxene characterizes the transition from the orthoamphibole to the orthopyroxene subfacies of the K-feldspar-cordierite hornfels facies. The following reaction takes place at pressures lower than 2000 bars: hornblende1+anthophyllite hornblende2+enstatite+anorthite+H2OSince at 2000 bars an Al-poor hornblende already exists in the hornblende-hornfels facies, it is very likely that here only anthophyllite breaks down to give enstatite+quartz+H2O.The equilibrium temperatures for these reactions which give rise to enstatite are: 650±10°C at 250 bars H2O pressure 690±10°C at 500 bars H2O pressure 715±10°C at 1000 bars H2O pressure 770±10°C at 2000 bars H2O pressureOnly after an increase in temperature to about 710°C at 500 bars and about 770°C at 1000 bars does hornblende in the system investigated here break down completely according to the reaction: hornblende = enstatite+anorthite+diopside+H2OExcept at very small H2O-pressures (see Fig. 3), there exists, therefore, a region within the orthopyroxene subfacies where hornblende, enstatite and anorthite coexist. As a result we have, as mentioned above, a lower-temperature and a higher-temperature part of the orthopyroxene subfacies, and it is only in the latter part that the parageneses correspond to the pyroxene-hornfels facies as stated by Eskola (1939).Summing up, the starting material consisting of chlorite, talc, tremolite plus quartz remains unchanged in the albite-epidote-hornfels facies; this gives rise in the hornblende-hornfels facies to the paragenesis hornblende+anthophyllite, or — at higher pressures — to hornblende+anthophyllite+anorthite. For the particular composition of the starting material, however, no reactions take place at the transition of the hornblende-hornfels facies to the orthoamphibole subfacies of the K-feldspar-cordierite-hornfels facies as this transition is typified by the breakdown of muscovite in the presence of quartz. However, at the end of the orthoamphibole subfacies the breakdown of anthophyllite, by which orthopyroxene is formed, heralds the onset of the orthopyroxene subfacies. In this subfacies — at greater than about 300 bars — hornblende is still present and coexists with enstatite and anorthite, but with rising temperature hornblende breaks down to give way to the paragenesis enstatite+anorthite+diopside. The experimentally determined parageneses confirm known petrographic occurrences.

Für die Förderung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft vielmals. Der Dank von Choudhuri gilt dem Akademischen Auslandsamt der Universität Göttingen für ein Stipendium, das ihm den Abschluß seiner Studien an der Universität Göttingen ermöglichte.  相似文献   

17.
Generally synmetamorphic granitic stocks intrude high-grade, Silurian-lowermost Devonian metasedimentary rocks near Augusta, Maine. Rb-Sr whole-rock isochrons (8 points each) define mutually overlapping crystallization ages of 394±8 m.y. (Togus quartz monzonite), 387±11 m.y. (Hallowell quartz monzonite), and 381±14 m.y. (Three Mile Pond biotite granodiorite), thereby providing a narrow chronologic bracket for Acadian tectonothermal activity in the area. Igneous hornblende, muscovite, and biotite display internally concordant 40Ar/39Ar age spectra with plateau dates of 350 m.y. (hornblende) and 300-265 m.y. (muscovite and biotite), with an overall southwestward younging trend. The mineral dates are similar to those recorded in adjacent portions of the regional metamorphic terrain and suggest a prolonged postmagmatic cooling which closely followed the diachronous northeast-southwest post-Acadian cooling of the country rocks. No evidence for a distinct Permian thermal overprint of older isotopic systems has been observed.  相似文献   

18.
The Au–Fe mineralized granitoids at Mezcala district have a porphyry texture with a quartz+feldspar microcrystalline matrix and phenocrysts of plagioclase, quartz (with reaction rims), hornblende and biotite. The primary minerals are oligoclase–andesine, microcline and β-quartz. The accessory minerals are biotite, hornblende and, in minor amounts, apatite+zircon+sphene+titanomagnetite. Some intrusive rocks present abundant hornblende autoliths. Based on the petrography and bulk geochemistry of these granitoids, they are classified as monzonite, tonalite (the most abundant) and granodiorite with a strong calc-alkaline trend in potassium (K2O=3.8% average). The bulk and trace elements chemistry is SiO2=63.8%, Al2O3=15.83%, Fe2O3+MgO+MnO+TiO=6.52%; V=76.7 ppm, Cr=50.2 ppm, Ni=19.7 ppm, Sr=694 ppm. These granitoids show a strong depletion in heavy rare-earth elements (HREE), with average values of Yb=1 ppm and Y=13 ppm, this being the characteristic geochemical signature for adakite. The trace elements content suggests that the adakite granitoids from Mezcala were formed within a tectonic framework of volcanic arc related to the interaction between the Farallon and North America plates. This interaction occurred during the Paleocene after the Laramide Orogeny (post-collision zone) in a fast convergent thick continental crust (>50 km) subduction regime. The original magma is interpreted as being the product of partial melting of an amphibolite–eclogite transition zone source with little contribution of the mantle wedge. Along with the hydration processes, a metallic fertility also took place in the area. The geochemical signature of the adakites within the granitoids rocks represents a characteristic guide for further exploration for Au-rich skarn-type ore deposits in southern México.  相似文献   

19.
The Mylliem granitoids of the Meghalaya Plateau, northeastern India, represent one of the disharmonic Neoproterozoic igneous plutons, which are intrusive into low-grade Shillong Group of metasediments. Field studies indicate that the Mylliem granitoids cover an area of about 40 km2 and is characterized by development of variable attitude of primary foliations mostly marked along the margin of the pluton. Xenoliths of both Shillong Group of metasediments and mafic rocks have been found to occur within Mylliem granitoids. Structural study of the primary foliation is suggestive of funnel-shaped intrusion of Mylliem granitoids with no appreciable evidence of shearing. Petrographically, Mylliem granitoids are characterized by pink to white phenocrysts of prismatic microcline/perthite and lath-shaped plagioclase (An20–An29). Groundmass material is characterized by quartz, microcline, plagioclase, muscovite and biotite. Sphene and apatite occur as accessory minerals. Petrographically Mylliem granitoids have been discriminated as granite and granodiorite according to IUGS system of classification.  相似文献   

20.
Nd and Sr isotope data were obtained for three plutonic suites (595–505 Ma) and distinct young granitoid intrusions (503 Ma), from the southern part of the Neoproterozoic Araçuaí Orogen. The Sr and Nd isotopes (87Sr/86Sr, eNd) and TDM values from the plutons and distinct basement rocks are used to constrain the magma genesis of the granitoid plutons. These isotopic parameters, with eNd values ranging from −4 to −24 and TDM ages from 1.3 to 2.8 Ga, for the granitoid suites, and −5 to −40 and 3.5 to 1.5 Ga, for the distinct Archean and Proterozoic basement complexes, suggest that the Jequitinhonha Complex metasediments are the main crustal source for most of these plutons, except for the youngest granitoid intrusions, which may have a protolith similar to the Mantiqueira and Guanhães complexes. Furthermore, the isotope data indicate a minor, but important, participation of Neoproterozoic oceanic lithosphere in the granite genesis, which corroborates with a confined orogenic model and a narrow oceanic consumption (B-subduction) for the Araçuaí Orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号