首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MRT pulsar observing system set-up in July 1996 has been used to observe about 30 pulsars at our low observing frequency of 150MHz. From the data considered so far, we have detected 10 pulsars, including the bright millisecond pulsar (MSP) J0437-4715. This is the only MSP observable at such a low frequency making its study specially interesting and more so that it has some apparently unusual properties. In this paper, we discuss some of our main results obtained on the MSP J0437-4715 and on the ‘core-single’ normal pulsarsJ1453-6413 and J1752-2806. Our results are also compared with those obtained at other frequencies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We have observed a total of 67 pulsars at five frequencies ranging from 243 to 3100 MHz. Observations at the lower frequencies were made at the Giant Metre-Wave Telescope in India and those at higher frequencies at the Parkes Telescope in Australia. We present profiles from 34 of the sample with the best signal-to-noise ratio and the least scattering. The general 'rules' of pulsar profiles are seen in the data; profiles get narrower, the polarization fraction declines and outer components become more prominent as the frequency increases. Many counterexamples to these rules are also observed, and pulsars with complex profiles are especially prone to rule breaking. We hypothesize that the location of pulsar emission within the magnetosphere evolves with time as the pulsar spins down. In highly energetic pulsars, the emission comes from a confined range of high altitudes, in the middle range of spin down energies the emission occurs over a wide range of altitudes whereas in pulsars with low spin-down energies it is confined to low down in the magnetosphere.  相似文献   

3.
The results of flux pulsar radioemission measurements at meter wavelengths, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value isv m =130±80 MHz. Averaged on many pulsars, the spectral index is negative in the 39–61 MHz frequency range and passes through zero at frequencies of about 100 MHz, becoming positive in the 100–400 MHz frequency range. It was noticed that the spectral index in the 100–400 MHz interval depends upon such pulsar periods as α100−=0.7logp+0.9. Using the spectra, more precise radio luminosities of pulsars have been computed.  相似文献   

4.
In this paper, we describe pulsar observations at decametric wavelengths using the Gauribidanur Radio Telescope made subsequent to our earlier measurements (Deshpande & Radhakrishnan 1992). To improve the time-resolution in our measurements of pulse profiles, we have used the ‘swept-frequency dedispersion’ method with some modifications to suit its application at such low radio frequencies. We also present a new scheme that simplifies the calibration of the receiver gain characteristics. We present average profiles on four pulsars from these improved measurements at 34.5 MHz.  相似文献   

5.
The Parkes survey of the entire southern sky for millisecond and other low-luminosity pulsars has now been completed. The survey system and initial results were described by Manchester et al. and the final results and population studies are described by Lyne et al. A total of 298 pulsars were detected, including 101 new discoveries of which 17 were millisecond pulsars. Here we report on timing observations at Parkes and Jodrell Bank of the 84 long-period (non-millisecond) pulsars discovered in the survey, including timing solutions for 78 of them. Pulse profiles and arrival times were obtained at several different frequencies over intervals of more than a year, yielding a position, period, period derivative and dispersion measure for each pulsar. Pulse profiles at frequencies near 400 MHz and 600 or 1400 MHz are presented for most of the observed pulsars. Significant timing noise was detected for five pulsars and a glitch was observed in the period of PSR J1123–6259.  相似文献   

6.
In the previous paper of this series, Deshpande & Rankin reported results regarding the sub-pulse drift phenomenon in pulsar B0943+10 at 430 and 111 MHz. This study has led to the identification of a stable system of sub-beams circulating around the magnetic axis of this star. Here, we present a single-pulse analysis of our observations of this pulsar at 35 MHz. The fluctuation properties seen at this low frequency, as well as our independent estimates of the number of sub-beams required and their circulation time, agree remarkably well with the reported behaviour at higher frequencies. We use the 'cartographic' transform mapping technique developed by Deshpande & Rankin in Paper I to study the emission pattern in the polar region of this pulsar. The significance of our results in the context of radio emission mechanisms is also discussed.  相似文献   

7.
In an earlier paper, based on simultaneous multifrequency observations with the Giant Metrewave Radio Telescope (GMRT), we reported the variation of pulsar dispersion measures (DMs) with frequency. A few different explanations are possible for such frequency dependence, and a possible candidate is the effect of pulse shape evolution on the DM estimation technique. In this paper we describe extensive simulations we have done to investigate the effect of pulse profile evolution on pulsar DM estimates. We find that it is only for asymmetric pulse shapes that the DM estimate is significantly affected due to profile evolution with frequency. Using multifrequency data sets from our earlier observations, we have carried out systematic analyses of PSR B0329+54 and PSR B1642−03. Both these pulsars have central core-dominated emission which does not show significant asymmetric profile evolution with frequency. Even so, we find that the estimated DM shows significant variation with frequency for these pulsars. We also report results from new, simultaneous multifrequency observations of PSR B1133+16 carried out using the GMRT in phased array mode. This pulsar has an asymmetric pulse profile with significant evolution with frequency. We show that in such a case, amplitude of the observed DM variations can be attributed to profile evolution with frequency. We suggest that genuine DM variations with frequency could arise due to propagation effects through the interstellar medium and/or the pulsar magnetosphere.  相似文献   

8.
We report on multi-epoch, multifrequency observations of 64 pulsars with high spectral and time resolution. Scintillation parameters were obtained for 49 pulsars, including 13 millisecond pulsars. Scintillation speeds were derived for all 49, which doubles the number of pulsars with speeds measured in this way. There is excellent agreement between the scintillation speed and proper motion for the millisecond pulsars in our sample using the simple assumption of a mid-placed scattering screen. This indicates that the scaleheight of scattering electrons is similar to that of the dispersing electrons. In addition, we present observations of the Vela pulsar at 14 and 23 GHz, and show that the scintillation bandwidth scales as ν3.93 over a factor of 100 in observing frequency. We show that for PSR J0742−2822, and perhaps PSR J0837−4135, the Gum nebula is responsible for the high level of turbulence along their lines of sight, contrary to previous indications. There is a significant correlation between the scintillation speeds and the product of the pulsar's period and period derivative for the 'normal' pulsars. However, we believe this to be caused by selection effects both in pulsar detection experiments and in the choice of pulsars used in scintillation studies.  相似文献   

9.
We determined the features of pulsars that were disregarded in standard amplitude-calibration procedures for VLBI observations. We suggest additional amplitude-calibration methods. These methods were used to process the VLBI observations of the pulsar PSR B0329+54 carried out with the HALCA ground—space interferometer. Data from the space radio telescope are corrected for a nonuniform reception band. We estimated the diameter of the scattering disk for this pulsar at a frequency of 1600 MHz: \( < 1\mathop .\limits^{''} 8 \times 10^{ - 3}\).  相似文献   

10.
This review describes the observational properties of radio pulsars, fast rotating neutron stars, emitting radio waves. After the introduction we give a list of milestones in pulsar research. The following chapters concentrate on pulsar morphology: the characteristic pulsar parameters such as pulse shape, pulsar spectrum, polarization and time dependence. We give information on the evolution of pulsars with frequency since this has a direct connection with the emission heights, as postulated in the radius to frequency mapping (RFM) concept. We deal successively with the properties of normal (slow) pulsars and of millisecond (fast-recycled) pulsars. The final chapters give the distribution characteristics of the presently catalogued 1300 objects.Received: 5 December 2003, Published online: 15 April 2004 Correspondence to: Richard Wielebinski  相似文献   

11.
We report on searches of the globular cluster Terzan 5 for low-luminosity and accelerated radio pulsars using the 64-m Parkes radio telescope. One new millisecond pulsar, designated PSR J1748−2446C, was discovered, having a period of 8.44 ms. Timing measurements using the 76-m Lovell radio telescope at Jodrell Bank show that it is a solitary pulsar and lies close to the core of the cluster. We also present the results of timing measurements which show that the longer period pulsar PSR J1748−2444 (formerly known as PSR B1744−24B) lies 10 arcmin from the core of the cluster and is unlikely to be associated with the cluster. We conclude that there are further pulsars to be detected in the cluster.  相似文献   

12.
In this contribution we present our preliminary investigation on pulsar sensitivity of the Large Area Telescope, the main instrument aboard the GLAST mission. In particular we concentrated our attention to pulsars located at low galactic latitudes. We created a set of simulated pulsars having different fluxes in an array of galactic coordinates separated by a distance greater than the LAT Point Spread Function in order to avoid confusion between adjacent sources. Galactic gamma-ray sky background as used during the second LAT Data Challenge (DC2) is also included. We then run an automatic routine for testing periodicity for all the pulsars considering an opportune timing solution. In this way we can obtain a map of the sensitivity of the periodic searches for different fluxes and for various Galactic latitudes. Some assumptions have been made by simulating the pulsar sources, but this study is a first step toward an estimate for pulsed emission sensitivity of the GLAST LAT. The pulsed flux sensitivity profile we generate could also be input to a population synthesis code of Galactic pulsars in order to obtain more accurate predictions of the number of expected pulsar detections by GLAST. On behalf of the GLAST LAT Collaboration.  相似文献   

13.
A fully real-time coherent dedispersion system has been developed for the pulsar back-end at the Giant Metrewave Radio Telescope (GMRT). The dedispersion pipeline uses the single phased array voltage beam produced by the existing GMRT software back-end (GSB) to produce coherently dedispersed intensity output in real time, for the currently operational bandwidths of 16 MHz and 32 MHz. Provision has also been made to coherently dedisperse voltage beam data from observations recorded on disk. We discuss the design and implementation of the real-time coherent dedispersion system, describing the steps carried out to optimise the performance of the pipeline. Presently functioning on an Intel Xeon X5550 CPU equipped with a NVIDIA Tesla C2075 GPU, the pipeline allows dispersion free, high time resolution data to be obtained in real-time. We illustrate the significant improvements over the existing incoherent dedispersion system at the GMRT, and present some preliminary results obtained from studies of pulsars using this system, demonstrating its potential as a useful tool for low frequency pulsar observations. We describe the salient features of our implementation, comparing it with other recently developed real-time coherent dedispersion systems. This implementation of a real-time coherent dedispersion pipeline for a large, low frequency array instrument like the GMRT, will enable long-term observing programs using coherent dedispersion to be carried out routinely at the observatory. We also outline the possible improvements for such a pipeline, including prospects for the upgraded GMRT which will have bandwidths about ten times larger than at present.  相似文献   

14.
We present an analysis of the variations seen in the dispersion measures (DMs) of 20-ms pulsars observed as part of the Parkes Pulsar Timing Array project. We carry out a statistically rigorous structure function analysis for each pulsar and show that the variations seen for most pulsars are consistent with those expected for an interstellar medium characterized by a Kolmogorov turbulence spectrum. The structure functions for PSRs J1045−4509 and J1909−3744 provide the first clear evidence for a large inner scale, possibly due to ion–neutral damping. We also show the effect of the solar wind on the DMs and show that the simple models presently implemented into pulsar timing packages cannot reliably correct for this effect. For the first time we clearly show how DM variations affect pulsar timing residuals and how they can be corrected in order to obtain the highest possible timing precision. Even with our presently limited data span, the residuals (and all parameters derived from the timing) for six of our pulsars have been significantly improved by correcting for the DM variations.  相似文献   

15.
Polarimetric observations of 300 pulsars have been conducted with the 76-m Lovell telescope at Jodrell Bank at radio frequencies centred around 230, 400, 600, 920, 1400 and 1600 MHz. More than half of the pulsars have no previously published polarization profiles and this compilation represents about three times the sum of all previously published pulsar polarization data. A selection of integrated polarization profiles is provided. Tables of pulse widths and the degree of both linear and circular polarization are given for all pulsars, and these act as an index for all the data, which are available by anonymous ftp in numerical and graphical form.  相似文献   

16.
The observed values of the time-derivatives of the spin or orbital frequency of pulsars are affected by their dynamical properties. We derive thorough analytical expressions for such dynamical contributions in terms of the Galactic coordinates, the proper motion, the pulsar distance, and the radial velocity. We find that the effects of the dynamical terms in the second-derivative of frequencies or parameters based on such second derivatives, e.g., braking index, are usually negligible. However, unique pulsars for which the effects of the dynamical terms are significant can exist. In particular, dynamical effects can make the magnitude of the observed value of the braking index to be in the order of thousand while the true value of it is close to the theoretically expected value three, especially if the pulsars lie close to the Galactic centre. Dynamics can also affect the value of the second derivative of the orbital frequency of a binary pulsar at the first decimal place. We also emphasize the fact that our expressions provide more accurate results than pre-existing approximate ones that exclude some of the terms. Comparison with a set of pulsars showed that the median value of the difference between the results obtained by our method and a pre-existing method is about 50 percent.  相似文献   

17.
We discuss the resolution of pulsar magnetospheres using interstellar scintillation. The two-dimensional spatial structure of pulsar emission zones can be obtained from analysis of diffractive scintillations at low frequencies. Based on refractive and diffractive scintillation of pulsars we can also reconstruct the distribution of turbulent plasma along the line of sight, and using this analysis a new approach to pulsar distance estimation can be made. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We present the discovery and follow-up observations of 142 pulsars found in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. These new discoveries bring the total number of pulsars found by the survey to 742. In addition to tabulating spin and astrometric parameters, along with pulse width and flux density information, we present orbital characteristics for 13 binary pulsars which form part of the new sample. Combining these results from another recent Parkes multibeam survey at high Galactic latitudes, we have a sample of 1008 normal pulsars which we use to carry out a determination of their Galactic distribution and birth rate. We infer a total Galactic population of  30 000 ± 1100  potentially detectable pulsars (i.e. those beaming towards us) having 1.4-GHz luminosities above 0.1 mJy kpc2. Adopting the Tauris & Manchester beaming model, this translates to a total of  155 000 ± 6000  active radio pulsars in the Galaxy above this luminosity limit. Using a pulsar current analysis, we derive the birth rate of this population to be  1.4 ± 0.2  pulsars per century. An important conclusion from our work is that the inferred radial density function of pulsars depends strongly on the assumed distribution of free electrons in the Galaxy. As a result, any analyses using the most recent electron model of Cordes & Lazio predict a dearth of pulsars in the inner Galaxy. We show that this model can also bias the inferred pulsar scaleheight with respect to the Galactic plane. Combining our results with other Parkes multibeam surveys we find that the population is best described by an exponential distribution with a scaleheight of 330 pc. Surveys underway at Parkes and Arecibo are expected to improve the knowledge of the radial distribution outside the solar circle, and to discover several hundred new pulsars in the inner Galaxy.  相似文献   

19.
We report the results of the measurements and analysis of the pulse broadening due to interstellar scattering on 43 pulsars at 102 MHz. This is the largest uniform sample of direct measurements of pulsar scatteringτsc, which make it feasible to analyze the dependence of this value on other pulsar parameters. The measured dependence of τscon dispersion measure τsc (DM)=40(DM/100)2.1 is close to theoretically expected relation τsc (DM)∝ DM2. A frequency dependence of the scattering pulse broadening is weaker than commonly accepted τsc ∝ ν-4.4. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We discuss here the design details of an inexpensive programmable Sweeping Local Oscillator System (SLOS) built for use in a ‘swept frequency dedispersion scheme’ for pulsar observations. A useful extension of the basic Divide-and-Add algorithm for frequency synthesis is developed for this purpose. An SLOS based on this design has been built and used for high time-resolution observations of pulsars at low radio-frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号