首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) is flying as an ESA instrument on India's Chandrayaan-1 mission to the Moon. The Chandrayaan-1 mission launched on the 22nd October 2008 and entered a 100 km polar lunar orbit on the 12th November 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a technically much more capable instrument. Here we describe the instrument design.  相似文献   

2.
The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.  相似文献   

3.
The D-CIXS Compact X-ray Spectrometer will provide high quality spectroscopic mapping of the Moon, the primary science target of the ESA SMART-1 mission. D-CIXS consists of a high throughput spectrometer, which will perform spatially localised X-ray fluorescence spectroscopy. It will also carry a solar monitor, to provide the direct calibration needed to produce a global map of absolute lunar elemental abundances, the first time this has been done. Thus it will achieve ground breaking science within a resource envelope far smaller than previously thought possible for this type of instrument, by exploiting two new technologies, swept charge devices and micro-structure collimators. The new technology does not require cold running, with its associated overheads to the spacecraft. At the same time it will demonstrate a radically novel approach to building a type of instrument essential for the BepiColombo mission and potential future planetary science targets.  相似文献   

4.
Venus Express is the first European (ESA) mission to the planet Venus. Its main science goal is to carry out a global survey of the atmosphere, the plasma environment, and the surface of Venus from orbit. The payload consists of seven experiments. It includes a powerful suite of remote sensing imagers and spectrometers, instruments for in-situ investigation of the circumplanetary plasma and magnetic field, and a radio science experiment. The spacecraft, based on the Mars Express bus modified for the conditions at Venus, provides a versatile platform for nadir and limb observations as well as solar, stellar, and radio occultations. In April 2006 Venus Express was inserted in an elliptical polar orbit around Venus, with a pericentre height of ~250 km and apocentre distance of ~66000 km and an orbital period of 24 hours. The nominal mission lasted from June 4, 2006 till October 2, 2007, which corresponds to about two Venus sidereal days. Here we present an overview of the main results of the nominal mission, based on a set of papers recently published in Nature, Icarus, Planetary and Space Science, and Geophysical Research Letters.  相似文献   

5.
The advanced Moon micro-imager experiment (AMIE) is the imaging system on board ESA mission to the Moon SMART-1; it makes use of a miniaturised detector and micro-processor electronics developed by SPACE X in the frame of the ESA technical programme. The AMIE micro-imager will provide high resolution CCD images of selected lunar areas and it will perform colour imaging through three filters at 750, 915 and 960 nm with a maximum resolution of 46 m/pixel at the perilune of 500 km. Specific scientific objectives will include (1) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin (SPA) and the permanently shadowed regions close to the South Pole, (2) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith), (3) multi-band imaging for constraining the chemical and mineral composition of the surface, (4) detection and characterisation of lunar non-mare volcanic units, (5) study of lithological variations from impact craters and implications for crustal heterogeneity. The AMIE micro-imager will also support a Laser-link experiment to Earth, an On Board Autonomous Navigation investigation and a Lunar libration experiment coordinated with radio science measurements.  相似文献   

6.
SMART-1 is a technology demonstrator for using primary electric propulsion on interplanetary spacecraft. Hence, studying of the interaction of the plasma emitted by the thruster with the environment and the spacecraft is one of the top priorities during the mission. Two experiments (Electronic propulsion diagnostic package and Spacecraft potential, electron and dust experiment) are available to measure the electron densities and temperatures as well as wave electric fields during the operation of the electric propulsion thruster. Additionally, a retarding potential analyser, a quartz microbalance and a solar-cell sample will analyse data from slow charge-exchange ions which are a potential contamination source. ESTEC is developing a 3D particle-in-cell model in order to study the spacecraft/environment interactions on SMART-1 and interpret the measurements. In the present paper, we will review the contamination effects associated with electric propulsion and how the plasma sensors cover them. We further present preliminary results from the numerical simulation and show how the flight data will be used to validate the modelling code. A successful validation of the simulation will support future interplanetary and commercial missions featuring electric propulsion to reduce the risk of contamination and interference with on board instruments.  相似文献   

7.
The SMART-1 mission has recently arrived at the Moon. Its payload includes D-CIXS, a compact X-ray spectrometer. SMART-1 is a technology evaluation mission, and D-CIXS is the first of a new generation of planetary X-ray spectrometers. Novel technologies enable new capabilities for measuring the fluorescent yield of a planetary surface or atmosphere which is illuminated by solar X-rays. During the extended SMART-1 cruise phase, observations of the Earth showed strong argon emission, providing a good source for calibration and demonstrating the potential of the technique. At the Moon, our initial observations over Mare Crisium show a first unambiguous remote sensing of calcium in the lunar regolith. Data obtained are broadly consistent with current understanding of mare and highland composition. Ground truth is provided by the returned Luna 20 and 24 sample sets.  相似文献   

8.
The Mercury Orbiter Radio science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury, to be launched in October 2018. Thanks to full on-board and on-ground instrumentation performing very precise tracking from the Earth, MORE will have the chance to determine with very high accuracy the Mercury-centric orbit of the spacecraft and the heliocentric orbit of Mercury. This will allow to undertake an accurate test of relativistic theories of gravitation (relativity experiment), which consists in improving the knowledge of some post-Newtonian and related parameters, whose value is predicted by General Relativity. This paper focuses on two critical aspects of the BepiColombo relativity experiment. First of all, we address the delicate issue of determining the orbits of Mercury and the Earth–Moon barycenter at the level of accuracy required by the purposes of the experiment and we discuss a strategy to cure the rank deficiencies that appear in the problem. Secondly, we introduce and discuss the role of the Solar Lense–Thirring effect in the Mercury orbit determination problem and in the relativistic parameters estimation.  相似文献   

9.
The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas of lunar science, including an improved estimate of the bulk composition of the Moon, detailed observations of the lateral and vertical nature of the crust, chemical observations of the maria, investigations into the lunar regolith, and mapping of potential lunar resources. In combination with information to be obtained by the other instruments on SMART-1 and the data already provided by the Clementine and Lunar Prospector missions, this information will allow for a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon.  相似文献   

10.
The design of spacecraft trajectories is a crucial part of a space mission design. Often the mission goal is tightly related to the spacecraft trajectory. A geostationary orbit is indeed mandatory for a stationary equatorial position. Visiting a solar system planet implies that a proper trajectory is used to bring the spacecraft from Earth to the vicinity of the planet. The first planetary missions were based on conventional trajectories obtained with chemical engine rockets. The manoeuvres could be considered 'impulsive' and clear limitations to the possible missions were set by the energy required to reach certain orbits. The gravity-assist trajectories opened a new way of wandering through the solar system, by exploiting the gravitational field of some planets. The advent of other propulsion techniques, as electric or ion propulsion and solar sail, opened a new dimension to the planetary trajectory, while at the same time posing new challenges. These 'low thrust' propulsion techniques cannot be considered 'impulsive' anymore and require for their study mathematical techniques which are substantially different from before. The optimisation of such trajectories is also a new field of flight dynamics, which involves complex treatments especially in multi-revolution cases as in a lunar transfer trajectory. One advantage of these trajectories is that they allow to explore regions of space where different bodies gravitationally compete with each other. We can exploit therefore these gravitational perturbations to save fuel or reduce time of flight. The SMART-1 spacecraft, first European mission to the Moon, will test for the first time all these techniques. The paper is a summary report on various activities conducted by the project team in these areas.  相似文献   

11.
12.
The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) will fly as an ESA instrument on India's Chandrayaan-1 mission to the Moon, launched in October 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a scientifically much more capable instrument. Here we describe the scientific objectives of this instrument, which include mapping the abundances of the major rock-forming elements (principally Mg, Al, Si, Ti, Ca and Fe) in the lunar crust. These data will aid in determining whether regional compositional differences (e.g., the Mg/Fe ratio) are consistent with models of lunar crustal evolution. C1XS data will also permit geochemical studies of smaller scale features, such as the ejecta blankets and central peaks of large impact craters, and individual lava flows and pyroclastic deposits. These objectives all bear on important, and currently unresolved, questions in lunar science, including the structure and evolution of any primordial magma ocean, as revealed by vertical and lateral geochemical variations in the crust, and the composition of the lunar mantle, which will further constrain theories of the Moon's origin, thermal history and internal structure.  相似文献   

13.
In our present understanding of the Solar System, small bodies (asteroids, Jupiter Trojans, comets and TNOs) are the most direct remnants of the original building blocks that formed the planets. Jupiter Trojan and Hilda asteroids are small primitive bodies located beyond the ‘snow line’, around respectively the L4 and L5 Lagrange points of Jupiter at ~5.2?AU (Trojans) and in the 2:3 mean-motion resonance with Jupiter near 3.9?AU (Hildas). They are at the crux of several outstanding and still conflicting issues regarding the formation and evolution of the Solar System. They hold the potential to unlock the answers to fundamental questions about planetary migration, the late heavy bombardment, the formation of the Jovian system, the origin and evolution of trans-neptunian objects, and the delivery of water and organics to the inner planets. The proposed Trojans’ Odyssey mission is envisioned as a reconnaissance, multiple flyby mission aimed at visiting several objects, typically five Trojans and one Hilda. It will attempt exploring both large and small objects and sampling those with any known differences in photometric properties. The orbital strategy consists in a direct trajectory to one of the Trojan swarms. By carefully choosing the aphelion of the orbit (typically 5.3?AU), the trajectory will offer a long arc in the swarm thus maximizing the number of flybys. Initial gravity assists from Venus and Earth will help reducing the cruise time as well as the ΔV needed for injection thus offering enough capacity to navigate among Trojans. This solution further opens the unique possibility to flyby a Hilda asteroid when leaving the Trojan swarm. During the cruise phase, a Main Belt Asteroid could be targeted if requiring a modest ΔV. The specific science objectives of the mission will be best achieved with a payload that will perform high-resolution panchromatic and multispectral imaging, thermal-infrared imaging/ radiometry, near- and mid-infrared spectroscopy, and radio science/mass determination. The total mass of the payload amounts to 50?kg (including margins). The spacecraft is in the class of Mars-Express or a down-scaled version of Jupiter Ganymede Orbiter. It will have a dry mass of 1200?kg, a total mass at launch of 3070?kg and a ΔV capability of 700?m/s (after having reached the first Trojan) and can be launched by a Soyuz rocket. The mission operations concept (ground segment) and science operations are typical of a planetary mission as successfully implemented by ESA during, for instance, the recent flybys of Main Belt asteroids Steins and Lutetia.  相似文献   

14.
This paper reports a design study for a space-based decametric wavelength telescope. While not a new concept, this design study focused on many of the operational aspects that would be required for an actual mission. This design optimized the number of spacecraft to insure good visibility of approx. 80% of the radio galaxies– the primary science target for the mission. A 5,000 km lunar orbit was selected to guarantee minimal gravitational perturbations from Earth and lower radio interference. Optimal schemes for data downlink, spacecraft ranging, and power consumption were identified. An optimal mission duration of 1 year was chosen based on science goals, payload complexity, and other factors. Finally, preliminary simulations showing image reconstruction were conducted to confirm viability of the mission. This work is intended to show the viability and science benefits of conducting multi-spacecraft networked radio astronomy missions in the next few years.  相似文献   

15.
Analysis of the gravity gradiometer developed by R. L. Forward and C. C. Bell at the Hughes Research Laboratories suggest than an accuracy, in the range 0.1 to 0.5 EU can be expected in a lunar orbiter application. This accuracy will allow gradient anomalies associated with mascons to be mapped with 1% accuracy and should reveal a great deal of new information about the lunar gravity field.The proposed experiment calls for putting such a gradiometer into a closely circular polar orbit at an average height of about 30 km above the lunar surface. This orbit allows the entire lunar surface to be covered in fourteen days, the gradiometer to be checked twice per revolution and results in successive passes above the lunar surface being spaced at about the resolution limit of about 30 km set both by the satellite altitude and instrumental integration time. Doppler tracking will be employed and the spacecraft will carry an electromagnetic altimeter. Gradient and altitude data from the far side of the Moon can be stored for replay when communication is re-established.  相似文献   

16.
MarcoPolo-R near earth asteroid sample return mission   总被引:3,自引:0,他引:3  
MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) proposed in collaboration with NASA. It will rendezvous with a primitive NEA, scientifically characterize it at multiple scales, and return a unique sample to Earth unaltered by the atmospheric entry process or terrestrial weathering. MarcoPolo-R will return bulk samples (up to 2?kg) from an organic-rich binary asteroid to Earth for laboratory analyses, allowing us to: explore the origin of planetary materials and initial stages of habitable planet formation; identify and characterize the organics and volatiles in a primitive asteroid; understand the unique geomorphology, dynamics and evolution of a binary NEA. This project is based on the previous Marco Polo mission study, which was selected for the Assessment Phase of the first round of Cosmic Vision. Its scientific rationale was highly ranked by ESA committees and it was not selected only because the estimated cost was higher than the allotted amount for an M class mission. The cost of MarcoPolo-R will be reduced to within the ESA medium mission budget by collaboration with APL (John Hopkins University) and JPL in the NASA program for coordination with ESA’s Cosmic Vision Call. The baseline target is a binary asteroid (175706) 1996 FG3, which offers a very efficient operational and technical mission profile. A binary target also provides enhanced science return. The choice of this target will allow new investigations to be performed more easily than at a single object, and also enables investigations of the fascinating geology and geophysics of asteroids that are impossible at a single object. Several launch windows have been identified in the time-span 2020–2024. A number of other possible primitive single targets of high scientific interest have been identified covering a wide range of possible launch dates. The baseline mission scenario of MarcoPolo-R to 1996 FG3 is as follows: a single primary spacecraft provided by ESA, carrying the Earth Re-entry Capsule, sample acquisition and transfer system provided by NASA, will be launched by a Soyuz-Fregat rocket from Kourou into GTO and using two space segment stages. Two similar missions with two launch windows, in 2021 and 2022 and for both sample return in 2029 (with mission duration of 7 and 8?years), have been defined. Earlier or later launches, in 2020 or 2024, also offer good opportunities. All manoeuvres are carried out by a chemical propulsion system. MarcoPolo-R takes advantage of three industrial studies completed as part of the previous Marco Polo mission (see ESA/SRE (2009)3, Marco Polo Yellow Book) and of the expertise of the consortium led by Dr. A.F. Cheng (PI of the NASA NEAR Shoemaker mission) of the JHU-APL, including JPL, NASA ARC, NASA LaRC, and MIT.  相似文献   

17.
The demonstration of a compact imaging X-ray spectrometer (D-CIXS), which flew on ESA's SMART-1 mission to the Moon (Racca et al., 2001; Foing et al., 2006), was designed to test innovative new technologies for orbital X-ray fluorescence spectroscopy. D-CIXS conducted observations of the lunar surface from January 2005 until SMART-1 impacted the Moon in September 2006. Here, we present scientific observations made during two solar flare events and show the first detection of Titanium Kα from the lunar surface. We discuss the geological implications of these results. We also discuss how experience from D-CIXS has aided the design of a similar instrument (Chandrayaan-1 X-ray Spectrometer (C1XS)) that was launched on the 22nd October 2008 on India's Chandrayaan-1 mission to the Moon.  相似文献   

18.
We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 m) over a wide range of phase angles. Since these spectral channels and the AMIE resolution are close to those of the UVVIS camera onboard the Clementine spacecraft, the simultaneous processing of SMART-1 and Clementine data can be planned, for example, to obtain phase-ratio images. These images carry information on the structural features of the lunar surface. In particular, UVVIS/Clementine data revealed a photometric anomaly at the Apollo-15 landing site associated with the blowing of the lunar regolith by the lander engine. Anomalies were found in the ejection zones of several fresh craters.  相似文献   

19.
《Planetary and Space Science》1999,47(8-9):1051-1060
It is planned that the LUNA-GLOB spacecraft will deliver an orbiter and 14 landers to the Moon.The schematic diagram of the spacecraft flight to the Moon is shown in Fig. 1
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
Fig. 1. Schematic diagram of the LUNA-GLOB SC flight to the Moon.
. The flight time is estimated at 4.5 days. Some 33 h before the spacecraft approaches the Moon a container with 10 small high-velocity penetrators (SHVP) will be separated from the spacecraft. It will continue the flight to the Moon autonomously. When the container is at a close distance to the Moon it will intensively rotate, and the penetrators will be separated from it. They will continue their flight to the Moon, and at a rate of 2.6 km⧸s, they will penetrate the surface.Then, two large penetrators (LP) will separate and continue the flight autonomously. In due time they will decelerate and penetrate the surface at a rate of 80–100 m⧸s.Finally, after leaving the satellite orbit the polar station (PS) will land to the South Polar Region at a rate of 80–100 m⧸s.All 12 penetrators, which will be dropped from the spacecraft, have seismometers. They are intended for the research into the internal structure of the Moon that is one of the main scientific objectives of the project. The (PS) accommodates a complex of instruments intended for the solution of another objective of the project: the search for volatiles.  相似文献   

20.
The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号