首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV–TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2–3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10°. In the following study, we investigate the prospects for CTA to study several science questions that can profoundly influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations currently under discussion, we employ a Monte Carlo based approach to evaluate the prospects for detection and characterisation of new physics with the array.First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, which are virtually void of astrophysical background and have a relatively well known dark matter density; in the region close to the Galactic Centre, where the dark matter density is expected to be large while the astrophysical background due to the Galactic Centre can be excluded; and in clusters of galaxies, where the intrinsic flux may be boosted significantly by the large number of halo substructures. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma-rays from very distant blazars. We establish the axion mass range CTA could probe through observation of long-lasting flares in distant sources. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.  相似文献   

2.
中子星可以通过重子物质和暗物质的相互作用吸积暗物质,且在一定条件下, 中子星吸积的暗物质粒子可以引发自引力塌缩形成小型黑洞, 生成的黑洞可能会进一步吞噬中子星.依据文献已有模型, 基于以上物理过程给出了在暗物质粒子不同质量下对暗物质粒子--中子的散射截面的限制.使用弱相互作用大质量粒子(Weakly Interacting Massive Particle, WIMP)模型, 并考虑暗物质粒子是玻色子的情形, 讨论了暗物质粒子有无自相互作用以及有无湮灭等条件下对限制暗物质参数的影响.既考虑了已发现的两个中子星系统来给出对暗物质参数空间的限制,也考虑了两个可能存在的年老中子星来预测未来观测可能对暗物质参数空间的限制.对于考虑玻色--爱因斯坦凝聚(Bose-Einstein Condensate, BEC)的玻色子暗物质, 在无自相互作用或有弱自相互作用, 无湮灭或有很小湮灭截面的条件下,中子星给出的间接观测对暗物质粒子-中子散射截面的限制的强度比XENON1T直接探测实验来得更强.未来, 如果在银心附近能观测到年老中子星, 其观测结果可以提升模型给出的对暗物质粒子--中子散射截面的限制, 从而帮助人们进一步理解暗物质.  相似文献   

3.
We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets.  相似文献   

4.
X-ray and γ-ray observations can help understand the origin of the electron and positron signals reported by ATIC, PAMELA, PPB-BETS, and Fermi. It remains unclear whether the observed high-energy electrons and positrons are produced by relic particles, or by some astrophysical sources. To distinguish between the two possibilities, one can compare the electron population in the local neighborhood with that in the dwarf spheroidal galaxies, which are not expected to host as many pulsars and other astrophysical sources. This can be accomplished using X-ray and γ-ray observations of dwarf spheroidal galaxies. Assuming the signal detected by Fermi and ATIC comes from dark matter and using the inferred dark matter profile of the Draco dwarf spheroidal galaxy as an example, we calculate the photon spectrum produced by electrons via inverse Compton scattering. Since little is known about the magnetic fields in dwarf spheroidal galaxies, we consider the propagation of charged particles with and without diffusion. Extending the analysis of Fermi collaboration for Draco, we find that for a halo mass ∼109 M, even in the absence of diffusion, the γ-ray signal would be above the upper limits. This conclusion is subject to uncertainties associated with the halo mass. If dwarf spheroidal galaxies host local magnetic fields, the diffusion of the electrons can result in a signal detectable by future X-ray telescopes.  相似文献   

5.
Ultracompact dark matter minihalos(UCMHs) would be formed during the early universe if there were large density perturbations.If dark matter can decay into particles described by the standard model,such as neutrinos,these objects would become potential astrophysical sources of emission which could be detected by instruments such as IceCube.In this paper,we investigate neutrino signals from nearby UCMHs due to gravitino dark matter decay and compare these signals with the background neutrino flux which is mainly from the atmosphere to obtain constraints on the abundance of UCMHs.  相似文献   

6.
The main properties of the neutralino dark matter are revisited in the light of the new theoretical developments in Susy theories and of the recent constraints from accelerators and underground experiments. The neutralino relic abundance and the detection rates relevant for direct and indirect searches are evaluated in the minimal supersymmetric standard model (MSSM) with the full inclusion of the (one-loop) radiative corrections, both to the Higgs masses and to the trilinear Higgs self-coupling. The relevance of these corrections for the neutralino-neutralino annihilation cross-section, and thus for the relic density, is discussed in detail. Large regions of the parameter space are considered, including those where the neutralino only provides a fraction of the local dark matter density; in these domains the standard value for the local density is appropriately scaled down. Some general properties of the detection rates as functions of the MSSM parameters are also elucidated; in particular it is shown that in the regions of the parameter space where scaling of the local density occurs, the rates are largely independent of two of the model free parameters. The relevance of the Kamiokande upper bounds to the upgoing muon fluxes is discussed in connection with the possible neutrino outputs from the Earth and from the Sun due to neutralino accumulation and annihilation in these macroscopic bodies. Finally, the complementarity between the search for neutralino dark matter and the discovery potential of future accelerators is discussed.  相似文献   

7.
We investigate the properties of 1D flux 'voids' (connected regions in the flux distribution above the mean-flux level) by comparing hydrodynamical simulations of large cosmological volumes with a set of observed high-resolution spectra at z ∼ 2. After addressing the effects of box size and resolution, we study how the void distribution changes when the most significant cosmological and astrophysical parameters are varied. We find that the void distribution in the flux is in excellent agreement with predictions of the standard Λcold dark matter (ΛCDM) cosmology, which also fits other flux statistics remarkably well. We then model the relation between flux voids and the corresponding 1D gas-density field along the line of sight and make a preliminary attempt to connect the 1D properties of the gas-density field to the 3D dark matter distribution at the same redshift. This provides a framework that allows statistical interpretations of the void population at high redshift using observed quasar spectra, and eventually it will enable linking the void properties of the high-redshift universe with those at lower redshifts, which are better known.  相似文献   

8.
We review the status of indirect Dark Matter searches, focusing in particular on the connection with gamma-ray Astrophysics. After a brief introduction where we review the strong motivations for indirect searches, we tackle the question of how one can “discover” Dark Matter particles with astrophysical observations. To this purpose, I will discuss some recent conflicting claims that have generated some confusion in the field, and present new strategies that may provide robust enough evidence to claim discovery, based only on astrophysical observations.  相似文献   

9.
Astrophysical limits on massive dark matter   总被引:1,自引:0,他引:1  
Annihilations of weakly interacting dark matter particles provide an important signature for the possibility of indirect detection of dark matter in galaxy haloes. These self-annihilations can be greatly enhanced in the vicinity of a massive black hole. We show that the massive black hole present at the centre of our galaxy accretes dark matter particles, creating a region of very high particle density. Consequently the annihilation rate is considerably increased, with a large number of e+e pairs being produced either directly or by successive decays of mesons. We evaluate the synchrotron emission (and self-absorption) associated with the propagation of these particles through the galactic magnetic field, and are able to constrain the allowed values of masses and cross sections of dark matter particles.  相似文献   

10.
宇宙线从发现起至今已超过百年。在20世纪上半叶,大型粒子加速器技术成熟以前,对宇宙线的研究引领着基本粒子物理的发展,从宇宙线研究中取得的多项成果斩获诺贝尔奖。21世纪,宇宙线因其与极端高能的物理规律和暗物质等新物理现象联系密切而绽放出新的活力,宇宙线起源、加速、传播等相关的天文学及物理学问题也备受关注。简述了近年来在空间直接观测宇宙线实验方面取得的进展,以及其对理解宇宙线物理问题的推动。最后概述了中国在相关领域的研究历程和现状。  相似文献   

11.
12.
HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard China’s space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution ( ∼1% for electrons and photons and 20% for nuclei) and a large geometry factor (>3 m2 sr for electrons and diffuse photons and > [2]m2 sr for nuclei). In this work we discuss the capability of HERD to detect monochromatic γ-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic γ-ray searches at energies between ∼ 10 to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD.  相似文献   

13.
Among the direct searches for WIMP-type dark matter, the DAMA experiment is unique in that it has consistently reported a positive signal for an annual-modulation signal with a large (9.3σ) statistical significance. This result is controversial because if it is interpreted as a signature for WIMP interactions, it conflicts with other direct search experiments that report null signals in the regions of parameter space that are allowed by the DAMA observation. This necessitates an independent verification of the origin of the observed modulation signal using the same technique as that employed by the DAMA experiment, namely low-background NaI(Tl) crystal detectors. Here, we report first results of a program of NaI(Tl) crystal measurements at the Yangyang Underground Laboratory aimed at producing NaI(Tl) crystal detectors with lower background levels and higher light yields than those used for the DAMA measurements.  相似文献   

14.
The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.  相似文献   

15.
The history of cosmic ray studies can be traced back to the 1910s when Hess and other scientists first discovered them. Cosmic rays are very important laboratories of particle physics, and have led to many important discoveries of fundamental particles, such as the positrons, muons, pions, and a series of strange particles. Cosmic rays are nowadays the key probes of the extremely high-energy physics and dark matter particles. A brief review about the history and recent progresses of direct observations of cosmic rays is presented. In recent years, the new space-borne experiments such as PAMELA and AMS-02, as well as a few of balloon-borne experiments, have measured the energy spectra of cosmic rays very precisely, and revealed several new features/anomalies. Remarkable excesses of positron fraction in the total electron plus positron fluxes have been observed, which may be caused by the annihilation/decay of dark matter particles or by astrophysical pulsars. The cosmic ray antiprotons, which are expected to have the same secondary origin as that of positrons, do not show significant excesses compared with the background prediction. This result also constrains the modeling of the positron excesses. In addition, the spectral hardening above several hundred GeV of cosmic ray nuclei has been revealed. These results have important and interesting implications on our understandings of the origin, acceleration, and propagation of cosmic rays. In particular, China has launched the Dark Matter Particle Explorer (DAMPE) to indirectly search for the dark matter and explore the high-energy universe in the TeV window. Most recently, the DAMPE collaborators reported the new measurements of the cosmic ray electron plus positron fluxes up to about 5 TeV with a very high precision. The DAMPE data revealed clearly a deflection around 0.9 TeV in the electron energy spectrum. Possible fine structures of the electron plus positron spectra can be critically addressed with the accumulation of data in the coming years.  相似文献   

16.
Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.  相似文献   

17.
《Astroparticle Physics》2010,32(6):417-420
We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets.  相似文献   

18.
The largest and most detailed map of the distribution of dark matter in the Universe has been recently created by the Dark Energy Survey(DES) team. The distribution was found to be slightly(by a few percent) smoother and less clumpy than predicted by general relativity. This result was considered as a hint of some new physical laws. In the present paper we offer a relatively simple model that could explain the above result without resorting to any new physical laws. The model deals with the dynamics of a system consisting of a large number of gravitating neutral particles, whose mass is equal to the mass of hydrogen atoms. The central point of the model is a partial inhibition of the gravitation for a relatively small subsystem of the entire system. It would be sufficient for this subsystem to constitute just about a few percent of the total ensemble of particles for explaining the few percent more smooth distribution of dark matter(observed by the DES team) compared to the prediction of general relativity. The most viable candidate for the dark matter particles in this model is the second flavor of hydrogen atoms(SFHA) that has only S-states and therefore does not couple to the electric dipole radiation or even to higher multipole radiation, so that the SFHA is practically dark. The SFHA has experimental confirmation from atomic experiments, it does not go beyond the Standard Model, it is based on standard quantum mechanics and it explains puzzling astrophysical observations of the redshifted line 21 cm from the early Universe. Thus,our model explaining the DES result of a little too smooth distribution of dark matter without resorting to any new physical laws seems to be self-consistent.  相似文献   

19.
There are a number of theoretical and observational hints that large numbers of low-mass galaxies composed entirely of dark matter exist in the field. The theoretical considerations follow from the prediction of cold dark matter theory that there exist many low-mass galaxies for every massive one. The observational considerations follow from the observed paucity of these low-mass galaxies in the field but not in dense clusters of galaxies; this suggests that the lack of small galaxies in the field is due to the inhibition of star formation in the galaxies as opposed to the fact that their small dark matter haloes do not exist. In this work we outline the likely properties of low-mass dark galaxies, and describe observational strategies for finding them, and where in the sky to search. The results are presented as a function of the global properties of dark matter, in particular the presence or absence of a substantial baryonic dark matter component. If the dark matter is purely cold and has a Navarro, Frenk & White density profile, directly detecting dark galaxies will only be feasible with present technology if the galaxy has a maximum velocity dispersion in excess of 70 km s−1, in which case the dark galaxies could strongly lens background objects. This is much higher than the maximum velocity dispersions in most dwarf galaxies. If the dark matter in galaxy haloes has a baryonic component close to the cosmic ratio, the possibility of directly detecting dark galaxies is much more realistic; the optimal method of detection will depend on the nature of the dark matter. A number of more indirect methods are also discussed.  相似文献   

20.
We study predictions for dark matter (DM) phase-space structure near the Sun based on high-resolution simulations of six galaxy haloes taken from the Aquarius project. The local DM density distribution is predicted to be remarkably smooth; the density at the Sun differs from the mean over a best-fitting ellipsoidal equidensity contour by less than 15 per cent at the 99.9 per cent confidence level. The local velocity distribution is also very smooth, but it differs systematically from a (multivariate) Gaussian distribution. This is not due to the presence of individual clumps or streams, but to broad features in the velocity modulus and energy distributions that are stable in both space and time and reflect the detailed assembly history of each halo. These features have a significant impact on the signals predicted for weakly interacting massive particle and axion searches. For example, weakly interacting massive particles recoil rates can deviate by ∼10 per cent from those expected from the best-fitting multivariate Gaussian models. The axion spectra in our simulations typically peak at lower frequencies than in the case of multivariate Gaussian velocity distributions. Also in this case, the spectra show significant imprints of the formation of the halo. This implies that once direct DM detection has become routine, features in the detector signal will allow us to study the DM assembly history of the Milky Way. A new field, 'DM astronomy', will then emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号