首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.  相似文献   

2.
The processes of the solar radiation extinction in deep layers of the Venus atmosphere in a wavelength range from 0.44 to 0.66 µm have been considered. The spectra of the solar radiation scattered in the atmosphere of Venus at various altitudes above the planetary surface measured by the Venera-11 entry probe in December 1978 are used as observational data. The problem of the data analysis is solved by selecting an atmospheric model; the discrete-ordinate method is applied in calculations. For the altitude interval from 2–10 km to 36 km, the altitude and spectral dependencies of the volume coefficient of true absorption have been obtained. At altitudes of 3–19 km, the spectral dependence is close to the wavelength dependence of the absorption cross section of S3 molecules, whence it follows that the mixing ratio of this sulfur allotrope increases with altitude from 0.03 to 0.1 ppbv.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 304–320.Original Russian Text Copyright © 2005 by Maiorov, Ignat’ev, Moroz, Zasova, Moshkin, Khatuntsev, Ekonomov.  相似文献   

3.
A lead-free neutron monitor operating at High Altitude Research Laboratory (HARL), Gulmarg optimized for detecting 2.45 MeV neutron bursts produced during the atmospheric lightning discharges is also concurrently used for studying background neutron component present in the atmosphere. These background neutrons are produced due to the interaction of primary cosmic rays with the atmospheric constituents. In order to study and extract the information about the yield of the neutron production during transient atmospheric lightning discharges, the system is continuously operated to monitor and record the cosmic ray produced background secondary neutrons in the atmosphere. The data analysis of the background neutrons recorded by Lead-Free Gulmarg Neutron Monitor (LFGNM) has convincingly established that the modulation effects due to solar activity phenomena compare very well with those monitored by the worldwide IGY or NM64 type neutron monitors which have optimum energy response relatively towards the higher energy regime of the cosmic rays. The data has revealed various types of modulation phenomena like diurnal variation, Forbush decrease etc. during its entire operational period. However, a new kind of a periodic/seasonal variation pattern is also revealed in the data from September 2007 to September 2012, which is seen to be significantly consistent with the data recorded by Emilio Segre observatory, Israel (ESOI) Neutron Monitor. Interestingly, both these neutron monitors have comparable latitude and altitude. However, the same type of consistency is not observed in the data recorded by the other conventional neutron monitors operating across the globe.  相似文献   

4.
Atmospheric densities have been deduced from high resolution radar-determined orbital decay data and from data obtained from a uniaxial accelerometer flown onboard the low altitude satellite 1970-48A. Data were obtained during late June and early July, 1970. The orbital decay-deduced densities, having an effective 6 hr temporal resolution, were determined at an altitude of 143 km, essentially one-half scale height above perigee. The accelerometer deduced densities at the same altitude were obtained on both the approaching-perigee and leaving-perigee portions of each of fifty-nine orbits. A detailed comparison of the densities derived from both types of data is presented. In general, agreement is very good. A comparison of both types of data has also been made with the Jacchia 1970 and 1971 atmospheric models as well as the new OGO-6 atmospheric model. The Jacchia models display reasonable agreement with the data, but the OGO-6 model is unsuitable as a representation of atmospheric density at this altitude.  相似文献   

5.
Solar neutron events provide important opportunities to explore particle acceleration mechanisms using data from ground-based detectors and spacecrafts. Energetic neutrons carry crucial physics information of the acceleration site, such as energy spectrum, atmospheric elements of solar flare, scale height, convergence of the magnetic field and magnetohydrodynamic turbulence. Here 12 representative solar neutron events observed on the Earth, together with X and γ-ray observations from spacecrafts are presented. Theoretical approaches on solar neutrons that are carried out mainly through the Monte Carlo simulation are compared with the observation data, and the constraints of different theoretical models on the observations are to be summarized.  相似文献   

6.
新一代大规模光谱巡天项目产生了近千万条低分辨率恒星光谱,基于这些光谱数据,介绍一种名为The Cannon的机器学习方法。该方法完全基于已知恒星大气参数(有效温度、表面重力加速度和金属丰度等)的光谱数据,通过数据驱动来构建特征向量,建立光谱流量特征和恒星参数的函数对应关系,进而应用到观测光谱数据中,实现对恒星光谱的大气参数求解。The Cannon的主要优势为不直接基于任何恒星物理模型,适用性更广;由于使用了全谱信息,即便对于低信噪比光谱也能得到较高可信度的参数结果,该算法在大规模恒星光谱的数据处理和参数求解方面具有明显的优势。此外,还利用The Cannon得到LAMOST光谱数据中K巨星和M巨星的恒星参数。  相似文献   

7.
In situ composition measurements of atmospheric negative ions were made at 40.8 km altitude using a balloon-borne mass spectrometer with large mass range and improved mass resolution. The data obtained show marked differences compared to previous data obtained mostly around or below 33 km.It appears that these differences are mostly due to a higher atmospheric temperature, a lower nitric acid vapour abundance and a larger HSO3-vapour abundance prevailing at the higher altitude.A particularly striking feature is the relatively large fractional abundance of HSO3-containing cluster ions.Another interesting result is that nitric acid vapour abundances can be inferred from the negative ion composition data with better accuracy than is possible for lower altitudes. The reason being that collisional ion dissociation occurring during ion sampling is less disturbing.The inferred nitric acid vapour abundance for 40.8 km altitude is consistent with current 2-dimensional model calculations.  相似文献   

8.
The new generation of large sky area spectroscopic survey project has produced nearly 10 million low-resolution stellar spectra. Based on these spectroscopic data, this paper introduces a machine learning algorithm named The Cannon. This algorithm is completely based on the known spectroscopic data of stellar atmospheric parameters (effective temperature, surface gravity, and metal abundance, etc.), this algorithm builds the characteristic vector by means of data driving, and establishes the functional relation between spectral flux characteristics and stellar parameters. Then it is applied to the observed spectral data to calculate the atmospheric parameters. The main advantage of The Cannon is that it is not directly based on any stellar physical models, it has an even higher applicability. Moreover, because of the use of full-spectrum information, even for the spectra with a low signal-to-noise ratio (SNR), it still can obtain the parameter solutions of high reliability. This algorithm has significant advantages in the data processing and parameter determination of large-scale stellar spectra. In addition, this paper presents two examples of using The Cannon to obtain the stellar parameters of K and M giants from the LAMOST spectral data.  相似文献   

9.
R.T. Clancy  D.O. Muhleman 《Icarus》1985,64(2):157-182
Microwave spectra of carbon monoxide (12CO) in the mesosphere of Venus were measured in December 1978, May and December 1980, and January, September, and November 1982. These spectra are analyzed to provide mixing profiles of CO in the Venus mesosphere and best constrain the mixing profile of CO between ~ 100 and 80 km altitude. From the January 1982 measurement (which, of all our spectra, best constrains the abundance of CO below 80 km altitude) we find an upper limit for the CO mixing ratio below 80 km altitude that is two to three times smaller than the stratospheric (~65 km) value of 4.5 ± 1.0 × 10?5 determined by P. Connes, J. Connes, L.D. Kaplan, and W. S. Benedict (1968, Astrophys. J.152, 731–743) in 1967, indicating a possible long-term change in the lower atmospheric concentration of CO. Intercomparison among the individual CO profiles derived from our spectra indicates considerable short-term temporal and/or spatial variation in the profile of CO mixing in the Venus mesosphere above 80 km. A more complete comparison with previously published CO microwave spectra from a number of authors specifies the basic diurnal nature of mesospheric CO variability. CO abundance above ~ 95 km in the Venus atmosphere shows approximately a factor of 2–4 enhancement on the nightside relative to the dayside of Venus. Peak nightside CO abundance above ~95 km occurs very near to the antisolar point on Venus (local time of peak CO abundance above ~95 km occurs at 0.6?0.6+0.7 hr after midnight on Venus), strongly suggesting that retrograde zonal flow is substantially reduced at an altitude of 100 km in the Venus mesosphere. In contrast, CO abundances between 80 and 90 km altitude show a maximum that is shifted from the antisolar point toward the morningside of Venus (local time of peak CO abundance between 80 and 90 km occurs at 8.5 ± 1.0 hr past midnight on Venus). The magnitude of the diurnal variation of CO abundance between 80 and 90 km is again, approximately a factor of 2–4. Disk-averaged spectra of Venus do not determine the exact form for the diurnal distribution of CO in the Venus mesosphere as indicated by comparison of synthetic spectra, based upon model distributions, and the measured spectra. However, the offset in phase for the diurnal variation for the >95 km and 80–90-km-altitude regions requires an asymmetric (in solar zenith angle) distribution.  相似文献   

10.
Slope Detection and Ranging (SLODAR) is a technique for the measurement of the vertical profile of atmospheric optical turbulence strength. Its main applications are astronomical site characterization and real-time optimization of imaging with adaptive optical correction. The turbulence profile is recovered from the cross-covariance of the slope of the optical phase aberration for a double star source, measured at the telescope with a wavefront sensor (WFS). Here, we determine the theoretical response of a SLODAR system based on a Shack–Hartmann WFS to a thin turbulent layer at a given altitude, and also as a function of the spatial power spectral index of the optical phase aberrations. Recovery of the turbulence profile via fitting of these theoretical response functions is explored. The limiting resolution in altitude of the instrument and the statistical uncertainty of the measured profiles are discussed. We examine the measurement of the total integrated turbulence strength (the seeing) from the WFS data and, by subtraction, the fractional contribution from all turbulence above the maximum altitude for direct sensing of the instrument. We take into account the effects of noise in the measurement of wavefront slopes from centroids and the form of the spatial structure function of the atmospheric optical aberrations.  相似文献   

11.
利用地面中子监测器数据, 通过构建一个近似方程来进行拟合, 给出2017年9月的福布希型下降的时间结构和最大下降幅度, 并分析了中子监测器所处的海拔、地理经度、地理纬度和截止刚度等对福布希型下降的时间结构和下降幅度的影响.  相似文献   

12.
The vertical distribution of ozone in the atmosphere of Mars is computed from ultraviolet spectra obtained by the Mariner 9 spacecraft. In the Northern Hemisphere the ozone scale height is much smaller than the atmospheric scale height in midlatitudes and increases rapidly to a maximum farther north. At high latitudes (above 60°) there is no significant difference between the scale heights of ozone in the Northern (winter) Hemisphere and the Southern (summer) Hemisphere. Comparison of the ozone distribution with atmospheric temperature structure indicates that at some locations in the North, the density of water vapor increases with altitude, and the time for vertical mixing is about 3 days or more.  相似文献   

13.
Emission spectra from magnetars in the soft X-ray band likely contain a thermal component emerging directly from the neutron star (NS) surface. However, the lack of observed absorption-like features in quiescent spectra makes it difficult to directly constrain physical properties of the atmosphere. We argue that future X-ray polarization measurements represent a promising technique for directly constraining the magnetar magnetic field strength and geometry. We construct models of the observed polarization signal from a finite surface hotspot, using the latest NS atmosphere models for magnetic fields   B = 4 × 1013–5 × 1014 G  . Our calculations are strongly dependent on the NS magnetic field strength and geometry, and are more weakly dependent on the NS equation of state and atmosphere composition. We discuss how the complementary dependencies of phase-resolved spectroscopy and polarimetry might resolve degeneracies that currently hamper the determination of magnetar physical parameters using thermal models.  相似文献   

14.
The primary processing of the neutron monitor data includes all the necessary actions and procedures that each cosmic ray station follows in order to provide the worldwide neutron monitor network with good quality data. One of the main corrections of the primary data is the pressure correction due to the barometric effect. The barometric effect induces variations to the measured data of the neutron monitors which are related to the variations of the local atmospheric pressure of the stations. This correction requires the definition of the barometric coefficient which is calculated experimentally. The accurate calculation of the coefficient is a prerequisite for the quality of the data. This paper presents the implementation of an online tool which calculates the barometric coefficient of a cosmic ray station, by taking advantage of the fact that most stations publish their data on the Neutron Monitor Data Base.  相似文献   

15.
Recent spectroscopic observations of atmospheric emissions in the u.v. region of the spectrum have been analyzed using laboratory-measured excitation cross-sections, models and observations of energetic electron fluxes and models of atmospheric composition. In both the airglow and the aurora, self-consistent pictures of the excitation processes and atmospheric composition have been obtained. These analyses have shown that photoelectron fluxes measured from the Atmospheric Explorer satellite are in good agreement with the photoelectron-excited dayglow and that a large number of recent laboratory-measured excitation processes are able to reproduce the u.v. spectra in both the dayglow and aurora. In this paper we show that accurate quantitative determinations of thermospheric parameters can now be made from u.v. spectral observations. In particular, we show that the composition and temperature can be obtained from altitude profiles of the emissions alone, without reliance on the absolute photoelectron flux.  相似文献   

16.
Numerical simulation of atmospheric disturbances during the first hours after the Chelyabinsk and Tunguska space body impacts has been carried out. The results of detailed calculations, including the stages of destruction, evaporation and deceleration of the cosmic body, the generation of atmospheric disturbances and their propagation over distances of thousands of kilometers, have been compared with the results of spherical explosions with energy equal to the kinetic energy of meteoroids. It has been shown that in the case of the Chelyabinsk meteorite, an explosive analogy provides acceptable dimensions of the perturbed region and the perturbation amplitude. With a more powerful Tunguska fall, the resulting atmospheric flow is very different from the explosive one; an atmospheric plume emerges that releases matter from the meteoric trace to an altitude of the order of a thousand kilometers.  相似文献   

17.
Usoskin  I.G.  Alanko  K.  Mursula  K.  Kovaltsov  G.A. 《Solar physics》2002,207(2):389-399
Using a stochastic simulation of a one-dimensional heliosphere we calculate galactic cosmic ray spectra at the Earth's orbit for different values of the heliospheric modulation strength . Convoluting these spectra with the specific yield function of a neutron monitor, we obtain the expected neutron monitor count rates for different values of . Finally, inverting this relation, we calculate the modulation strength using the actually recorded neutron monitor count rates. We present the reconstructed annual heliospheric modulation strengths for the neutron monitor era (1953–2000) using several neutron monitors from different latitudes, covering a large range of geomagnetic rigidity cutoffs from polar to equatorial regions. The estimated modulation strengths are shown to be in good agreement with the corresponding estimates reported earlier for some years.  相似文献   

18.
Valdés-Galicia  J.F.  Dorman  L.I.  Rodríguez  M. 《Solar physics》2000,191(2):409-417
We revise the published neutron monitor raw data for the increase caused by the solar neutron event of the 24 May 1990. With these data we calculate the attenuation length, , of solar neutrons in the Earth's atmosphere assuming either a minimum path as given by the spread of elastically scattered neutrons, or using the minimum mass path estimated by Smart, Shea, and O'Bren (1995) due to an atmospheric refraction effect. In both cases reduces to a value around 100 g cm–2, which is more in accordance with data on neutron cross-sections (Shibata, 1994). These two phenomenological calculations suggest that solar neutrons do not propagate in straight lines in the atmosphere. The previous estimate of the attenuation length, =208 g cm–2, was calculated assuming straight-ahead transport (Smart, Shea, and O'Bren, 1995). Dorman, Valdes-Galicia, and Dorman (1999) performed a numerical simulation and an analytical approximation to the problem of solar neutron scattering and attenuation in the Earth's atmosphere. These solutions incorporate the refraction effect as a natural consequence of the greater absorption experienced by neutrons scattered to large zenith angles. They are able to reproduce the normalised observed counting rates of neutron monitors for this event.  相似文献   

19.
Saturn's largest moon, Titan, provides an interesting opportunity to study how dense atmospheres interact with the surrounding plasma environment. Without an intrinsic magnetic field, this satellite's nitrogen-rich atmosphere is relatively unprotected from plasma interactions. Therefore, the energy-deposition rate is important for understanding chemistry and dynamics in Titan's atmosphere. Since the plasma environment can vary significantly we focus here on the T18 Titan encounter using in-situ data from instruments on board the Cassini spacecraft. These instruments cannot provide in-situ information below the spacecraft closest approach altitude (∼>960 km) so we use the Cassini magnetospheric imaging instrument (MIMI) ion-neutral camera (INCA) to remotely image energetic hydrogen particle fluxes (20-80 keV) at altitudes below Titan closest approach. We also use the MIMI low-energy magnetosphere measurements system (LEMMS) to measure the incident ion fluxes as the spacecraft approaches Titan and combine these data sets with an atmospheric model to first reproduce INCA images. We then use this model to calculate the energy-deposition profiles for the observed incident proton flux. Our model is able to reproduce the INCA observations and give the energy density deposited vs. altitude in Titan's atmosphere; however, we find that the incident fluxes and energy-deposition profiles vary significantly during the encounter.  相似文献   

20.
Knowles  S.H.  Picone  J.M.  Thonnard  S.E.  Nicholas  A.C. 《Solar physics》2001,204(1-2):387-397
Geomagnetic storms driven by solar eruptions are known to have significant effects on the total density of the upper atmosphere in the altitude range 250–1000 km. This in turn causes a measurable effect on the orbits of resident space objects in this altitude range. We analyzed a sample of these orbits, both from sensor data and from orbital element sets, during the period surrounding the 14 July 2000 solar activity. We present information concerning the effects of this event on the orbits of resident space objects and how well accepted atmospheric models were able to represent it. As part of this analysis, we describe a technique for extracting atmospheric density information from orbital element sets. On daily time scales, the effect of geomagnetic activity appears to be more important than that of prompt radiation. However, the limitations in time and amplitude quantization of the accepted solar indices are evident. A limited comparison is also made with previous solar storm events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号