首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We study the fundamental modes of radiation hydrodynamic linear waves that arise from one-dimensional small-amplitude initial fluctuations with wave number k in a radiating and scattering grey medium by taking into account the gravitational effects. The equation of radiative acoustics is derived from three hydrodynamic equations, Poisson’s equation, and two moment equations of radiation, by assuming a spherical symmetry for the matter and radiation and by using the Eddington approximation. We solve the dispersion relation as a quintic function of angular frequency ω, the wave number k being a real parameter. Numerical results reveal that wave patterns of five solutions are distinguished into three types: the radiation-dominated, type 1, and type 2 matter-dominated cases. In the case of no gravitaional effects (Kaneko et al., 2005), the following wave modes appear: radiation wave, conservative radiation wave, entropy wave, Newtonian-cooling wave, opacity-damped and cooling-damped waves, constant-volume and constant-pressure diffusions, adiabatic sound wave, cooling-damped and drag-force-damped isothermal sound waves, isentropic radiation-acoustic wave, and gap mode. Meanwhile, the gravitaional effects being taken into account, the growing gravo-diffusion mode newly arises from the constant-pressure diffusion at the point that k agrees with Jeans’ wave number specified by the isothermal sound speed. This mode changes to the growing radiation-acoustic gravity mode near the point that k becomes Jeans’ wave number specified by the isentropic radiation-acoustic speed. In step with a transition between them, the isentropic radiation-acoustic wave splits into the damping radiation-acoustic gravity mode and constant-volume diffusion. The constant-volume diffusion emerges twice if the gravitational effects are taken into account. Since analytic solutions are derived for all wave modes, we discuss their physical significance. The critical conditions are given which distinguish between radiation-dominated and type 1 matter-dominated cases, and between type 1 and type 2 matter-dominated cases. Waves in a self-gravitating scattering grey medium are also analyzed, which provides us some hints for the effects of energy and momentum exchange between matter and radiation.  相似文献   

2.
This paper studies sonic waves in an optically thick medium under the influence of a magnetic field. The conductivity of the medium has been taken to be infinite. The effects of radiation, radiation energy density, radiative heat transfer and magnetic field have been taken into account. It has been obtained that the magnetic field has significant effect on sonic velocity. The fundamental differential equations governing the growth and decay of sonic waves are determined and solved.  相似文献   

3.
We present new spectral (FPI and long‐slit) data on the Eastern optical filament of the well known radionebula W50 associated with SS433. We find that on sub‐parsec scales different emission lines are emitted by different regions with evidently different physical conditions. Kinematical properties of the ionized gas show evidence for moderately high (V ∼ 100 km s–1) supersonic motions. [O III]λ 5007 emission is found to be multi‐component and differs from lowerexcitation [S II]λ 6717 line both in spatial and kinematical properties. Indirect evidence for very low characteristic densities of the gas (n ∼ 0.1 cm–3) is found. We propose radiative (possibly incomplete) shock waves in low‐density, moderately high metallicity gas as the most probable candidate for the power source of the optical filament. Apparent nitrogen overabundance is better understood if the location of W50 in the Galaxy is taken into account (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We study the spatial damping of magnetoacoustic waves in an unbounded quiescent prominence invoking the technique of MHD seismology. We consider Newtonian radiation in the energy equation and derive a fourth order general dispersion relation in terms of wavenumberk. Numerical solution of dispersion relation suggests that slow mode is more affected by radiation. The high frequency waves have been found to be highly damped. The uncertainty in the radiative relaxation time, however, does not allow us to conclude if the radiation is a dominant damping mechanism in quiescent prominence.  相似文献   

5.
We present a combined model for magnetic field generation and transport in cool stars with outer convection zones. The mean toroidal magnetic field, which is generated by a cyclic thin-layer α Ω dynamo at the bottom of the convection zone is taken to determine the emergence probability of magnetic flux tubes in the photosphere. Following the nonlinear rise of the unstable thin flux tubes, emergence latitudes and tilt angles of bipolar magnetic regions are determined. These quantities are put into a surface flux transport model, which simulates the surface evolution of magnetic flux under the effects of large-scale flows and turbulent diffusion. First results are discussed for the case of the Sun and for more rapidly rotating solar-type stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Sulphur is a volatile α ‐element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal‐poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal‐poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen ζ line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra‐red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal‐poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present first results of three‐dimensional numerical simulations of the non‐magnetic solar chromosphere, computed with the radiation hydrodynamics code CO5BOLD. Acoustic waves which are excited at the top of the convection zone propagate upwards into the chromosphere where the waves steepen into shocks. The interaction of the waves leads to the formation of complex structures which evolve on short time scales. Consequently, the model chromosphere is highly dynamical, inhomogeneous, and thermally bifurcated.  相似文献   

8.
We describe a combined dynamic atmosphere and maser propagation model of SiO maser emission in Mira variables. This model rectifies many of the defects of an earlier model of this type, particularly in relation to the infrared (IR) radiation field generated by dust and various wavelength-dependent, optically thick layers. Modelled masers form in rings with radii consistent with those found in very long baseline interferometry (VLBI) observations and with earlier models. This agreement requires the adoption of a radio photosphere of radius approximately twice that of the stellar photosphere, in agreement with observations. A radio photosphere of this size renders invisible certain maser sites with high amplification at low radii, and conceals high-velocity shocks, which are absent in radio continuum observations. The SiO masers are brightest at an optical phase of 0.1–0.25, which is consistent with observed phase lags. Dust can have both mild and profound effects on the maser emission. Maser rings, a shock and the optically thick layer in the SiO pumping band at 8.13 μm appear to be closely associated in three out of four phase samples.  相似文献   

9.
The functional analytic method of solution is applied to investigation of the radiative transfer equation in spectral lines. A problem of scattering in the spectral line with the frequency redistribution in anisotropic-scattering infinite and semi-infinite media is considered. Continuum absorption in the line is also taken into account.The solution is presented as the exponential function of the operatorA and the functional calculus is developed. The eigenfunction and the expansion coefficients, in terms of which the explicit solution is expressed, have been found. The nonlinear equation and the explicit expressions for theX-function are derived. The albedo problem with the determined expansion coefficients and the intensity of the emergent radiation is given as an example.  相似文献   

10.
The technique of Doppler tomography has been influential in the study of mass transfer in Algol‐type interacting binaries. The Algols contain a hot blue dwarf star with a magnetically‐active late‐type companion. In the close Algols, the gas stream flows directly into the photosphere of the blue mass‐gaining star because it does not have enough room to avoid impact with that star. Doppler tomograms of the Algols have been produced from over 2500 time‐resolved spectra at wavelengths corresponding to Hα, Hβ, He I (6678 Å), Si II (6371 Å) and Si IV (1394 ° A). These tomograms display images of accretion structures that include a gas stream, accretion annulus, accretion disk, stream‐star impact region, and occasionally a source of chromospheric emission associated with the cool, mass‐losing companion. Some Algol systems alternate between streamlike and disk‐like states, and provide direct evidence of active mass transfer within the Algols. This work produced the very first images of the gas stream for the entire class of interacting binaries, and demonstrated that the Algols are far more active than formerly believed, with variability on time scales of weeks to months. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present computed radiation spectra for the boundary layer (BL) of the accretion disk that is formed near the surface of a neutron star. Both free-free processes and Comptonization were taken into account. Our computations are based on the hydrodynamic solution obtained by Popham and Sunyaev (2001) for the BL structure. The computed spectra are highly diluted compared to the Planck spectra of the same surface temperature. They are complex in shape; in particular, an intense Wien emission component is formed in their high-energy region at high accretion rates. In general, the computed spectra are harder than those observed in actual X-ray sources. This is the result of a very high temperature found by Popham and Sunyaev (2001) for the BL. We show that such temperatures could result from an oversimplified treatment of radiative transfer in their paper, which completely ignored the frequency dependence of the matter opacity and radiation intensity. Our computations indicate that at moderate accretion rates, a proper treatment of radiative transfer with allowance for Comptonization leads to appreciably lower plasma temperatures and to softer radiation spectra.  相似文献   

12.
A brief history of investigations of Lyr, an emission‐line binary and one of the first ever discovered Be stars is presented. A rather fast progress in the understanding of this enigmatic object during the past fifteen years is then discussed in some detail. The current picture of β Lyr is that it is an eclipsing binary in a stage of mass transfer between the components. The mass‐losing star is a B6‐8II object, with a mass of about 3 M, which is filling the Roche lobe and sending material towards its more massive companion at a rate of about 2 × 10—5 M yr—1. This leads to the observed rapid increase of the orbital period at a rate of 19 s per year. The mass‐gaining star is as early B star with a mass of about 13 M. It is completely hidden inside an opaque accretion disk, jet‐like structures, perpendicular to the orbital plane and a light‐scattering halo above the poles of the star. The observed radiation of the disk corresponds to an effective temperature which is much lower than what would correspond to an early B star. The disk shields the radiation of the central star in the directions along the orbital plane and redistributes it in the directions perpendicular to it. That is why the mass‐losing star appears brighter of the two in the optical region of the spectrum. At present, rather reliable estimates of all basic properties of the binary and its components are available. However, in spite of great progress in understanding the system in recent years, some disagreement between the existing models and observed phase variations still remains, both for continuum and line spectrum, which deserves further effort.  相似文献   

13.
We present results of non-linear numerical simulations of gravity wave driven shear flow oscillations in the equatorial plane of the solar radiative interior. These results show that many of the assumptions of quasi-linear theory are not valid. When only two waves are forced (prograde and retrograde), oscillatory mean flow is maintained; but critical layers often form and are dynamically important. When a spectrum of waves is forced, the non-linear wave–wave interactions are dynamically important, often acting to decrease the maintenance of a mean flow. The (in)coherence of such wave–wave interactions must be taken into account when describing wave-driven mean flows.  相似文献   

14.
To explain the effects of the ultraviolet (UV) background radiation on the collapse of pre-galactic clouds, we implement a radiation–hydrodynamical calculation, combining one-dimensional spherical hydrodynamics with an accurate treatment of the radiative transfer of ionizing photons. Both absorption and scattering of UV photons are explicitly taken into account. It turns out that a gas cloud contracting within the dark matter potential does not settle into hydrostatic equilibrium, but undergoes run-away collapse even under the presence of the external UV field. The cloud centre is shown to become self-shielded against ionizing photons by radiative transfer effects before shrinking to the rotation barrier. Based on our simulation results, we further discuss the possibility of H2 cooling and subsequent star formation in a run-away collapsing core. The present results are closely relevant to the survival of subgalactic Population III objects as well as to metal injection into intergalactic space.  相似文献   

15.
We examine the spatial distribution of brown dwarfs produced by the decay of small‐N stellar systems as expected from the embryo ejection scenario. We model a cluster of several hundred stars grouped into ‘cores’ of a few stars/brown dwarfs. These cores decay, preferentially ejecting their lowest‐mass members. Brown dwarfs are found to have a wider spatial distribution than stars, however once the effects of limited survey areas and unresolved binaries are taken into account it can be difficult to distinguish between clusters with many or no ejections. A large difference between the distributions probably indicates that ejections have occurred, however similar distributions sometimes arise even with ejections. Thus the spatial distribution of brown dwarfs is not necessarily a good discriminator between ejection and non‐ejection scenarios. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The X‐ray spectra of Active Galactic Nuclei (AGN) are complex and vary rapidly in time as seen in recent observations. Magnetic flares above the accretion disk can account for the extreme variability of AGN. They also explain the observed iron Kα fluorescence lines. We present radiative transfer modeling of the X‐ray reflection due to emission from magnetic flares close to the marginally stable orbit. The hard X‐ray primary radiation coming from the flare source illuminates the accretion disk. A Compton reflection/reprocessed component coming from the disk surface is computed for different emission directions. We assume that the density structure remains adjusted to the hydrostatic equilibrium without external illumination because the flare duration is only a quarter‐orbit. The model takes into account the variations of the incident radiation across the hot spot underneath the flare source. The integrated spectrum seen by a distant observer is computed for flares at different orbital phases close to the marginally stable orbit of a Schwarzschild black hole and of a maximally rotating Kerr black hole. The calculations include relativistic and Doppler corrections of the spectra using a ray tracing technique. We explore the practical possibilities to map out the azimuthal irradiation pattern of the inner accretion disks and conclude that the next generation of X‐ray satellites should reveal this structure from iron Kα line profiles and X‐ray lightcurves. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present a study of radiative transfer in dusty, clumpy star-forming regions. A series of self-consistent, 3D, continuum radiative transfer models are constructed for a grid of models parametrized by central luminosity, filling factor, clump radius and face-averaged optical depth. The temperature distribution within the clouds is studied as a function of this parametrization. Among our results, we find that: (i) the effective optical depth in clumpy regions is less than in equivalent homogeneous regions of the same average optical depth, leading to a deeper penetration of heating radiation in clumpy clouds, and temperatures higher by over 60 per cent; (ii) penetration of radiation is driven by the fraction of open sky (FOS) – which is a measure of the fraction of solid angle along which no clumps exist; (iii) FOS increases as clump radius increases and as filling factor decreases; (iv) for values of   FOS >0.6–0.8  the sky is sufficiently 'open' that the temperature distribution is relatively insensitive to FOS; (v) the physical process by which radiation penetrates is preferentially through streaming of radiation between clumps as opposed to diffusion through clumps; (vi) filling factor always dominates the determination of the temperature distribution for large optical depths, and for small clump radii at smaller optical depths; (vii) at lower face-averaged optical depths, the temperature distribution is most sensitive to filling factors of 1–10 per cent, in accordance with many observations; (viii) direct shadowing by clumps can be important for distances approximately one clump radius behind a clump.  相似文献   

18.
A new way is adopted for the evaluation of the upwelling radiation from atmosphere bounded by two half-Lambert surfaces. The atmosphere is assumed to be homogeneous, and is composed of aerosol, molecules, and absorbent gases, where the model aerosol is of the oceanic and water soluble types.In the computational procedure, an iterative doubling-adding equation is expanded into a series of the radiative interaction modes between atmosphere and surface. Next, a probability of radiation interacting with respective half surfaces is calculated based on the assumption of single-scattering in the atmosphere. On the basis of this probability, the emergent radiation at the top of the atmosphere is approximately calculated by considering the radiative intractions to be twice as large. The effect of the multiple-scattering is fully taken into account. A numerical simulation exhibits the extraordinary effect near the two half-surface boundary of different albedoes. The effect of the other half-surface on the radiance decreases monotonically with the distance from the boundary. The present new version enable us to quantitatively discuss radiative transfer near the boundary of two half-surfaces even if the optical thickness is large and (or) surface albedo is great.  相似文献   

19.
Small levels of turbulence can be present in stellar radiative interiors due to, e.g., the instability of rotational shear. In this paper we estimate turbulent transport coefficients for stably stratified rotating stellar radiation zones. Stable stratification induces strong anisotropy with a very small ratio of radial‐to‐horizontal turbulence intensities. Angular momentum is transported mainly due to the correlation between azimuthal and radial turbulent motions induced by the Coriolis force. This non‐diffusive transport known as the Λ‐effect has outward direction in radius and is much more efficient compared to the effect of radial eddy viscosity. Chemical species are transported by small radial diffusion only. This result is confirmed using direct numerical simulations combined with the test‐scalar method. As a consequence of the non‐diffusive transport of angular momentum, the estimated characteristic time of rotational coupling (≲100 Myr) between radiative core and convective envelope in young solar‐type stars is much shorter compared to the time‐scale of Lithium depletion (∼1 Gyr) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the Hα line profile and observations of the Paschen β line. The shape of the V band light‐curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced Hα emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to log mTR < –4 based on the non‐detection of emission in the Paschen β wavelength region. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号