首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sedimentary deposits in the foreland basin of the northeastern Qilian Mountains are crucial documents recording tectonic activity and climate changes on the Tibetan Plateau. In this study, luminescence dating was used to date alluvial conglomerates and fluvial terrace sediments collected from the Beida River in the Jiuquan Basin, a foreland basin in the Hexi Corridor, northeastern Qilian Mountains. Detailed sedimentology and luminescence ages reveal that alluvial conglomerates accumulated from before 620 ka to 12 ka and that sediment accumulation rates increased at ∼330 ka and ∼35 ka, coinciding with the dates of two tectonic events (∼350 and ∼50 ka) and followed by climate cooling (from marine isotope stage (MIS) 9 to MIS 8 and from MIS 3 to MIS 2). This reveals that variations in the sediment accumulation rates are controlled by the coupling of tectonic uplift and climate cooling. The highest terrace (T7) that developed on the alluvial conglomerate base formed at ∼ 12 ka. The incision rate in the early Holocene was ∼2.1 mm/yr and increased to ∼14.6 mm/yr during the middle and late Holocene. The variations in the river incision rate provide geomorphic evidence for Holocene climate patterns in arid and semiarid areas. Luminescence dating offers a credible temporal framework for the deposits and reveals climate and tectonic effects on the evolution of the foreland basin, northeastern Qilian Mountains.  相似文献   

2.
In the Négron River catchment area (162 km2), surface‐sediment stores are composed of periglacial calcareous ‘grèze’ (5 × 106 t) and loess (21 × 106 t), and Holocene alluvium (12·6 × 106 t), peat (0·6 × 106 t) and colluvium (18·5 × 106 t). Seventy‐five per cent of the Holocene sediments is stored along the thalwegs. Present net sediment yield, calculated from solid discharge at the Négron outlet, is low (0·6 t km?2 a?1) due to the dominance of carbonate rocks in the catchment. Mean sediment yield during the Holocene period is 7·0 t km?2 a?1 from alluvium stores and 7·6 t km?2 a?1 from colluvium stores. Thus, the gross sediment yield during the Holocene period is about 18·7 t km?2 a?1 and the sediment delivery ratio 3 per cent. The yield considerably varies from one sub‐basin to another (3·9 to 24·5 t km?2 a?1) according to lithology: about 25 per cent and 50 per cent of initial stores of periglacial grèze and loess respectively were reworked during the Holocene period. Sediment yield has increased by a factor of 6 in the last 1000 years, due to the development of agriculture. The very high rate of sediment storage on the slope during that period (88 per cent of the yield) can be accounted for by the formation of cultivation steps (‘rideaux’). It is predicted that the current destruction of these steps will result in a sediment wave reaching the valley floors in the coming decades. Subboreal and Subatlantic sediments and pollen assemblages in the Taligny marsh, where one‐third of the alluvium is stored, show the predominant influence of human activity during these periods in the Négron catchment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The methodology and errors involved in determining the amount of sediment produced during two (19·5 and 33·2 year) periods by 11 (c. 0·01 − >0·20 km2) gullies within a 4 km2 area in the headwaters of the Waipaoa River basin, New Zealand, using sequential digital elevation models are described. Sediment production from all gullies within the study area was 0·99 ± 0·03 × 106 t a−1 (2480 ± 80 t ha−1 a−1) during the period from 1939 to 1958. It declined to 0·62 ± 0·02 × 106 t a−1 (1550 ± 50 t ha−1 a−1) during the period from 1958 to 1992, when many of the smaller gullies were stabilized by a programme of afforestation, which commenced in 1960. Both figures are very high by global standards. The two largest (the Tarndale and Mangatu) gully complexes together generated 73 and 95 per cent of the sediment in the specified time periods, but the latter amount is equivalent to only c. 5 per cent of the total annual sediment load of the Waipaoa River. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Factors influencing sediment transport and storage within the 156·6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11 000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a ‘quaternary terrace a (Qta)’ PRC terrace/PRC‐tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene‐Holocene transition caused intense debris‐flow erosion of PRC‐tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary‐valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene‐Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene‐Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene‐Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream‐capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley‐Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly interpret terrestrial sedimentary sequences in tectonically active areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Although much is known about overall sediment delivery ratios for catchments as components of sediment production and sediment yield, little is known about the component of temporary sediment storage. Sediment delivery ratios focused on the influence of storm-related sediment storage are measured at Matakonekone and Oil Springs tributaries of the Waipaoa River basin, east coast of New Zealand. The terrace deposits of both tributaries show abundant evidence of storm-related sedimentation, especially sediment delivered from Cyclone Bola, a 50 year return rainfall event which occurred in 1988. The sediment delivery ratio is calculated by dividing the volume of sediment transported from a tributary to the main stream by the volume of sediment generated at erosion sites in the tributary catchment. Because the sediment delivery volume is unknown, it can be calculated as the difference between sediment generation volume and sediment storage volume in the channel reach of the tributary. The volume of sediment generated from erosion sites in each tributary catchment was calculated from measurements made on aerial photographs dating from 1960 (1:44 000) and 1988 (1:27 000). The volume of sediment stored in the tributary can be calculated from measurements of cross-sections located along the tributary channel, which are accompanied by terrace deposits dated by counting annual growth rings of trees on terrace surfaces. Sediment delivery ratios are 0·93 for both Matakonekone catchment and Oil Springs catchment. Results indicate that Oil Springs catchment has contributed more than twice the volume of sediment to the Waipaoa River than the Matakonekone catchment (2·75 × 106 m3 vs 1·22 × 106 m3). Although large volumes of sediment are initially deposited during floods, subsequent smaller flows scour away much of these deposits. The sediment scouring rate from storage is 1·25 × 104 m3 a−1 for Matakonekone stream and 0·83 × 104 m3 a−1 for Oil Springs stream. Matakonekone and Oil Springs channels respond to extreme storms by instantaneously aggrading, then gradually excavating the temporarily stored sediment. Results from Matakonekone and Oil Springs streams suggest a mechanism by which event recurrence interval can strongly influence the magnitude of a geomorphic change. Matakonekone stream with its higher stream power is expected to excavate sediment deposits more rapidly and allow more rapid re-establishment of storage capacity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
《Continental Shelf Research》2006,26(17-18):2205-2224
On the eastern Raukumara Ranges of the New Zealand East Coast, active tectonics, vigorous weather systems, and human colonisation have combined to cause widespread erosion of the mudstone- and sandstone-dominated hinterland. The Waipaoa River sedimentary dispersal system is an example that has responded to environmental change, and is now New Zealand's second largest river in terms of suspended sediment discharge. This paper presents new sediment accumulation rates for the continental shelf and slope that span century to post-glacial time scales. These data are derived from radiochemical tracer, palynological, tephrostratigraphic, and seismic methods. We hypothesise on the temporal and spatial complexity of post-glacial sedimentation across the margin and identify the broad extent of sediment dispersal from the Waipaoa system. The ∼15 km3 Poverty Bay mid-shelf basin lies adjacent to the mouth of the Waipaoa River, reaching a maximum thickness of ∼45 m. A post-glacial mud lobe of an additional ∼3 km3 extends through the Poverty Gap and out onto the uppermost slope, attaining 40 m thickness in a structurally controlled sub-basin. Here, an offset in the last-glacial erosion surface indicates that deposition was sympathetic with fault activity and the creation of accommodation space, implying that sedimentation was not supply limited. Contrary to classical shelf sedimentation models, the highest modern accumulation rate of 1 cm y−1 occurs on the outer-shelf sediment lobe, approximately ∼2 times the rate recorded at the mid-shelf basin depocentre, and ∼10 times faster than the excess 210Pb rates estimated from the slope. Pollen records from slope cores fingerprint Polynesian then European settlement, and broaden the spatial extent of post-settlement sedimentation initially documented from the Poverty Bay mid-shelf. Changes in sub-millennial sedimentation infer a 2–3-times increase in post-settlement accumulation on the shelf but a smaller 1–2 times increase on the slope. Over longer time scales, seismic evidence infers slower but steady sedimentation since the last transgression, and that significant cross-shelf sediment pathways pre-date the increase in sedimentation resulting from colonisation and deforestation. From a summation of coastal bedload, shelf and slope sediment mass accumulation, the total sediment budget for the Holocene is ∼1 Mt y−1. Under modern conditions a larger proportion of the Waipaoa sediment dispersal system likely extends onto the slope and beyond.  相似文献   

7.
A cellular model of Holocene upland river basin and alluvial fan evolution   总被引:1,自引:0,他引:1  
The CAESAR (Cellular Automaton Evolutionary Slope And River) model is used to simulate the Holocene development of a small upland catchment (4·2 km2) and the alluvial fan at its base. The model operates at a 3 m grid scale and simulates every flood over the last 9200 years, using a rainfall record reconstructed from peat bog wetness indices and land cover history derived from palynological sources. Model results show that the simulated catchment sediment discharge above the alluvial fan closely follows the climate signal, but with an increase in the amplitude of response after deforestation. The important effects of sediment storage and remobilization are shown, and findings suggest that soil creep rates may be an important control on long term (>1000 years) temperate catchment sediment yield. The simulated alluvial fan shows a complex and episodic behaviour, with frequent avulsions across the fan surface. However, there appears to be no clear link between fan response and climate or land use changes suggesting that Holocene alluvial fan dynamics may be the result of phases of sediment storage and remobilization, or instabilities and thresholds within the fan itself. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Complete daily water budget information was assembled for a 105 km segment of the South Platte River in the plains region below Denver, CO, for the period 1983–1993. The data were used in testing the possibility that dependence of alluvial exchange mechanisms on stage height, as shown by models of alluvial exchange, allows alluvial exchange to be predicted continuously over a given reach through use of statistical information on river discharge. The study segment was divided into an upper and a lower reach; daily alluvial exchanges for each reach were estimated by the method of residuals. The two reaches show small (15%) but statistically significant annual differences in rates of exchange. For each reach, there is a seasonal pattern (2·5‐fold oscillation) in alluvial discharge to the channel, reflecting seasonality in recharge of the alluvium by irrigation. At discharges up to 40 m3/s (82nd percentile), alluvial discharge to the channel occurs at a rate independent of river discharge. Above 40 m3/s, net alluvial discharge into the channel is progressively reduced; at 60 m3/s (92nd percentile) there is no net alluvial exchange. At still higher river discharges, water is lost to the alluvium through bank storage at a rate that is linearly related to the logarithm of discharge. Annually, alluvial discharge accounts for 15–18% of water entering the study segment, and alluvial recharge through bank storage accounts for 2–4% of water leaving the segment. Alluvial recharge through bank storage at the highest discharges can, however, exceed low‐flow alluvial discharge rates by five‐fold over short intervals. Even though daily alluvial exchanges vary widely, they can be estimated at r2 values above 80% on the basis of reach, season, and river discharge. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The Guadiamar river ?ows from the southern Iberian Massif to the Guadalquivir foreland basin, SW Spain. Its drainage basin displays asymmetries in the stream network, the arrangement of alluvial terraces and the con?guration of the trunk river valley. The stream network asymmetry was studied using morphometric measures of transverse topographic sym‐metry, asymmetry factor and drainage basin shape. The alluvial terraces were studied through the lithologic logs of more than a hundred boreholes and ?eld mapping. The morphometric methods demonstrate a regional tectonic tilting toward the SSE, causing both the migration of the Guadiamar river toward the east and the migration of the Guadiamar tributaries toward the southwest. As a consequence of the Guadiamar river migration, an asymmetric valley developed, with a steep eastern margin caused by river dissection, and a gentle western margin where the main alluvial deposits are found. The ages obtained using the 14C analysis of samples from several alluvial deposits show that the river migration, and thus tilting, has occurred during the Holocene as well as earlier in the Quaternary. This interpretation revises the Guadiamar longitudinal fault assumed by previous studies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Arsenic-contaminated mine tailings that were discharged into Whitewood Creek at Lead, South Dakota, from 1876 to 1978, were deposited along the floodplains of Whitewood Creek and the Belle Fourche River. The resulting arsenic-contaminated floodplain deposit consists mostly of overbank sediments and filled abandoned meanders along White-wood Creek, and overbank and point-bar sediments along the Belle Fourche River. Arsenic concentrations of the contaminated sediments indicate the degree of dilution of mine tailings by uncontaminated alluvium. About 13 per cent of the 110 × 106 Mg of mine tailings that were discharged at Lead were deposited along the Whitewood Creek floodplain. Deposition of mine tailings near the mouth of Whitewood Creek was augmented by an engineered structure. About 29 per cent of the mine tailings delivered by Whitewood Creek were deposited along the Belle Fourche River floodplain. About 60 per cent of that sediment is contained in overbank deposits. Deposition along a segment of the Belle Fourche River was augmented by rapid channel migration. The proportions of contaminated sediment stored along Whitewood Creek and the Belle Fourche River are consistent with sediment storage along the floodplains of perennial streams in other, similar sized watersheds.  相似文献   

11.
Recent studies of sediment delivery and budgets in the United States indicate that upland erosion rates at a given time may not explain contemporaneous sediment yields from a drainage basin. This suggests temporal discontinuities in sediment delivery associated with hillslope and channel storage processes. Integration of sediment production, storage and transport is essential to understand sediment routing in basins. We analysed each process chronologically using aerial photographs, monitoring data of sediment movement and annual tree-rings, and then compared estimated temporal changes in sediment production from hillslopes, floodplain disturbance areas and sediment transport in river channels. Toeslopes, floodplains and alluvial fans together contained 59 per cent of sediment eroded from uplands over the last 30 years. Monitoring results of riverbed changes showed that the volume of stored sediment on floodplains decreased exponentially with succeeding floods. The age distribution of floodplain deposits reflected the disturbance history of a river channel, and followed an exponential decrease with age. The results of this study may have important implications for sediment control plans for watersheds in steep regions.  相似文献   

12.
The rate of vertical accretion (typically 14–18 mm h−1) during eight floods in the Waipaoa River basin, with recurrence intervals of 5 to 60 years, was determined by relating the floodplain stratigraphy at McPhail's bend to the 1948–1995 flood history. Overbank deposits remaining after a flood that occurred in March 1996 suggest a rate of vertical accretion of 15 mm h−1. By contrast, because the flow velocity across the floodplain was too high to permit deposition from suspension, during the record flood of March 1988 the rate of vertical accretion was only 6 mm h−1. The sequence of deposition is highly discontinuous, and the rapid vertical accretion is a response to a late 19th to early 20th century phase of deforestation in the headwaters that probably initiated a far greater change in suspended sediment yield than in discharge. Cross-section surveys conducted since 1948 indicate that the high suspended sediment load of the Waipaoa River also promoted in-channel deposition, which effected a progressive reduction in bankfull channel width although, due to the overbank deposition, channel capacity remained constant. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Channelization of the severely polluted Odra and Vistula Rivers in Poland induced intensive accumulation of fine‐grained deposits rich in organic matter and heavy metals. These sediments have been identified in vertical profiles in a narrow zone along river banks both in groyne‐created basins and on the floodplain. Grain size, organic matter, zinc (Zn), lead (Pb), copper (Cu) content and cesium‐137 (137Cs) was used for sediment dating and, stratigraphy and chemistry have been diagnostic features for these deposits, named industrial alluvium. In the most polluted river reaches stabilized by bank reinforcements and groynes, 2‐m‐thick slack water groyne deposits are composed of uniform strata of polluted silts with organic matter content over 10%, Zn content over 1000 mg/kg and average Cu and Pb over 100 mg/kg. The average rate of sediment accretion in groynes is higher than on the floodplain and reaches 5 cm/yr. Stratification which appears at higher levels in the groyne fields and on the levees reflects a change from in‐channel to overbank deposition and is typified by dark layers separated by bright, sandy, and less polluted strata. Stratified, 4‐m‐thick, sediment sequences have been found in groyne fields of incised river reaches. The average rate of sediment accretion in these reaches is of the order of 5 cm/yr. In stable and relatively less polluted river reaches, vertical‐accretion organic deposits are finely laminated and the average rate of deposition amounts to a few millimeters per year. Investigations indicate that groyne construction favors conditions for long‐term storage of sediments at channel banks. For this reason, groynes should be considered as structures that efficiently limit sudden release of sediment‐associated heavy metals stored in channels and in floodplains of the historically polluted rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
River floodplains constitute an important element in the terrestrial sediment and organic carbon cycle and store variable amounts of carbon and sediment depending on a complex interplay of internal and external driving forces. Quantifying the storage in floodplains is crucial to understand their role in the sediment and carbon cascades. Unfortunately, quantitative data on floodplain storage are limited, especially at larger spatial scales. Rivers in the Scottish Highlands can provide a special case to study alluvial sediment and carbon dynamics because of the dominance of peatlands throughout the landscape, but the alluvial history of the region remains poorly understood. In this study, the floodplain sediment and soil organic carbon storage is quantified for the mountainous headwaters of the River Dee in eastern Scotland (663 km2), based on a coring dataset of 78 floodplain cross-sections. Whereas the mineral sediment storage is dominated by wandering gravel-bed river sections, most of the soil organic carbon storage can be found in anastomosing and meandering sections. The total storage for the Upper Dee catchment can be estimated at 5.2 Mt or 2306.5 Mg ha-1 of mineral sediment and 0.7 Mt or 323.3 Mg C ha-1 of soil organic carbon, which is in line with other studies on temperate river systems. Statistical analysis indicates that the storage is mostly related to the floodplain slope and the geomorphic floodplain type, which incorporates the characteristic stream power, channel morphology and the deposit type. Mapping of the geomorphic floodplain type using a simple classification scheme shows to be a powerful tool in studying the total storage and local variability of mineral sediment and soil organic carbon in floodplains. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
Sediment cores were collected along ?oodplains in the Navarro River basin of coastal northern California to examine the controls on ?oodplain evolution in a tectonically active setting. Sedimentary strata were subsampled for organic content, bulk density, and grain size measurements. Organic samples were analysed for 14C age, which yielded net‐averaged sedimentation rates for all cores. Overbank deposition rates decreased at all study sites through time and declined in the downstream direction. The ability of intermediary‐order streams to store sediment in ?oodplains decreased the ability of highest‐order streams to record sediment‐pulse events. The effects of anthropogenic disturbance, primarily logging, on long‐term overbank deposition rates were minimal. Climatic variability, by affecting sediment loading in the channel network, is the principal control on ?oodplain evolution through the Holocene. A hypothetical model is proposed to explain overbank deposition rates in the Navarro basin, which may be extrapolated to the northern‐coastal California region during the late Pleistocene and Holocene. The complexities observed in sediment storage and routing in this study imply that caution should be made when extrapolating sediment‐yield measurements obtained at river mouths or coastal shelves to geomorphic events within small, tectonically active basins. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Lithalsas of the Great Slave Lowland, Northwest Territories, occur within fine‐grained glaciolacustrine, lacustrine, and alluvial deposits. Detailed investigations of a lithalsa revealed that it is composed of ice‐rich sediments with ice lenses up to 0.2 m thick below 4 m depth. The observed ice accounted for about 2 m of the 4 m between the top of the lithalsa and adjacent terrain. The ice is isotopically similar to modern surface water, but enriched in δ18O relative to local precipitation. Total soluble cation concentrations are low in the basal, Shield‐derived and unweathered glaciolacustrine sediments of the lithalsa. Higher concentrations in the overlying Holocene‐aged lacustrine and alluvial deposits may be due to greater ion availability in Holocene surface waters. Increasing Cl and Na+ concentrations in clays at depth likely relate to exclusion and migration of these dissolved ions in pore water during ice lens formation though total soluble cations remain comparatively low. The lithalsa developed 700 to 300 cal yr BP. A conceptual model of lithalsa formation and landscape evolution illustrates that this feature and more than 1800 other lithalsas in the region have developed in association with Holocene terrestrial emergence following lake‐level recession. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Recent emphasis on sediment connectivity in the literature highlights the need for quantitative baseline studies on the patterns and distribution of sediment stores to facilitate understanding of how sediment moves through the landscape at various temporal and spatial scales. This study evaluates the distribution and make‐up of sediment stores within the dramatically incised landscapes of the upper Yellow River, where basin fill deposits up to 1200 m in depth have been extensively reworked following incision by the Yellow River. Field and GIS analyses highlight the discontinuous distribution of sediment stores in Garang catchment, a 236 km2 tributary of the upper Yellow River. Volumetric estimates of sediment storage were obtained through a combination of field mapping, GPR transects, and GIS analyses. Sediment stores cover 20% of the Garang catchment, with an estimated volume of 474.0 × 106 m3, and inferred residence times from OSL and 14C dating of 103–104 years. Fans and terraces reworked from basin fill deposits, and associated cut and fill terrace features, are the dominant forms of sediment storage (~90% of total). A space‐for‐time argument is used to assess stages of basin infilling and subsequent landscape responses to incision, outlining a dramatic example of changes to sediment dynamics and connectivity relationships within the upper Yellow River. Sediments within the upper catchment lie above the regional basin fill level, offering a glimpse of pre‐incisional conditions. This contrasts markedly with the enduring influence of basin incisional history seen within the middle catchment, and the contemporary landscapes of the lower catchment where nearly all available sediment has been excavated from the basin and the landscape effectively operates under post‐incisional conditions. The need to contextualise catchment‐scale studies in terms of landscape history is emphasised. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Large volumes of groundwater are contained in the deep intermontane valleys of Basin and Range regions. Determining the shape and storage capacity of these basins by drilling can be expensive and difficult because of the depth of alluvium and large areas involved. These difficulties can often be overcome by combining gravimetric and seismic refraction interpretations. The basin boundaries are determined by gravimetric methods, with bulk density samples taken of all representative formations. Density values can then be correlated with seismic velocities to estimate subsurface porosities. Studies indicate that seismic velocity varies inversely with porosity for the alluvial deposits. These values can be correlated with their respective formations in the basin from geologic sections derived from the seismic refraction survey. Thus, with volume and porosity of the alluvium known, storage capacity (both present and potential) can be computed.  相似文献   

20.
A sand ridge field of 22 470 km2 consists of fine sands and silts originally from the old Changjiang River sediment during the late Pleistocene period. Late Holocene sand stratum with its well-preserved larmnary bedding of more clay particles reflects the influence from the Yellow River. There are three genetic types of morphology of sand ridge field as follows: (i) reformed alluvial sandy bodies and old river valleys, located in the central and southern parts, formed from the end of Pleistocene to the present. (ii) Radiative current ridges and patrimonal valley type, located in the northeastern part, formed during the early or middle Holocene time. (iii) Eroded-depositional sandy bodies in the north and outer parts, and erosional trough in the north formed since the middle Holocene transgression. The sand ridge field has a periodic nature of developing processes: the period of sediment accumulation by rivers during cold epoch with low sea level and the period of erosional formation by tidal currents during warm epoch of transgression. The river-sea interactive process in the area is closely related to the climate change; the rising and falling of the sea level is the detonating agent of the coast zone land-sea dynamic interactive processes. They can be summarized as “transgression-dynamic-sedimentation” processes. Project supported by the National Natural Science Foundation of China (Grant No. 49236120). Pmject codmg: SCIEL 21198103.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号