首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two models, one linear and one non‐linear, were employed for the prediction of flow discharge hydrographs at sites receiving significant lateral inflow. The linear model is based on a rating curve and permits a quick estimation of flow at a downstream site. The non‐linear model is based on a multilayer feed‐forward back propagation (FFBP) artificial neural network (ANN) and uses flow‐stage data measured at the upstream and downstream stations. ANN predicted the real‐time storm hydrographs satisfactorily and better than did the linear model. The results of sensitivity analysis indicated that when the lateral inflow contribution to the channel reach was insignificant, ANN, using only the flow‐stage data at the upstream station, satisfactorily predicted the hydrograph at the downstream station. The prediction error of ANN increases exponentially with the difference between the peak discharge used in training and that used in testing. ANN was also employed for flood forecasting and was compared with the modified Muskingum model (MMM). For a 4‐h lead time, MMM forecasts the floods reliably but could not be applied to reaches for lead times greater than the wave travel time. Although ANN and MMM had comparable performances for an 8‐h lead time, ANN is capable of forecasting floods with lead times longer than the wave travel time. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Application of artificial neural network (ANN) models has been reported to solve variety of water resources and environmental related problems including prediction, forecasting and classification, over the last two decades. Though numerous research studies have witnessed the improved estimate of ANN models, the practical applications are sometimes limited. The black box nature of ANN models and their parameters hardly convey the physical meaning of catchment characteristics, which result in lack of transparency. In addition, it is perceived that the point prediction provided by ANN models does not explain any information about the prediction uncertainty, which reduce the reliability. Thus, there is an increasing consensus among researchers for developing methods to quantify the uncertainty of ANN models, and a comprehensive evaluation of uncertainty methods applied in ANN models is an emerging field that calls for further improvements. In this paper, methods used for quantifying the prediction uncertainty of ANN based hydrologic models are reviewed based on the research articles published from the year 2002 to 2015, which focused on modeling streamflow forecast/prediction. While the flood forecasting along with uncertainty quantification has been frequently reported in applications other than ANN in the literature, the uncertainty quantification in ANN model is a recent progress in the field, emerged from the year 2002. Based on the review, it is found that methods for best way of incorporating various aspects of uncertainty in ANN modeling require further investigation. Though model inputs, parameters and structure uncertainty are mainly considered as the source of uncertainty, information of their mutual interaction is still lacking while estimating the total prediction uncertainty. The network topology including number of layers, nodes, activation function and training algorithm has often been optimized for the model accuracy, however not in terms of model uncertainty. Finally, the effective use of various uncertainty evaluation indices should be encouraged for the meaningful quantification of uncertainty. This review article also discusses the effectiveness and drawbacks of each method and suggests recommendations for further improvement.  相似文献   

3.
The Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and – optionally, if backwater effects have a significant impact on the flow regime – a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) – portraying the rainfall–runoff process – and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF – essentially consisting of the coupled “hydrologic” PoNN and “hydrodynamic” MLFN – to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.  相似文献   

4.
A. O. Pektas 《水文科学杂志》2017,62(10):1694-1703
Suspended sediment modelling is a quite significant issue in hydrology. The prediction of suspended sediment has taken the attention of several scientists in water resources. With extrapolation, the forecasting ability of the employed forecasting model beyond the calibration range is investigated. In the present study, different smoothing parameters are used to differentiate the kurtosis of the local critical points (local minima and maxima). The two models used are an artificial neural network (ANN) model and a multiple linear regression (MLR) model for prediction in order to examine the model extrapolation ability. The ANN model provides closer estimations to the observed peaks, being higher than the corresponding MLR ones. For the local minima, the ANN predictions are higher than the MLR predictions. As there are limited local points, all the remaining ANN predictions are lower than the MLR ones except for one point.  相似文献   

5.
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.  相似文献   

6.
Nowadays, Flood Forecasting and Warning Systems (FFWSs) are known as the most inexpensive and efficient non‐structural measures for flood damage mitigation in the world. Benefit to cost of the FFWSs has been reported to be several times of other flood mitigation measures. Beside these advantages, uncertainty in flood predictions is a subject that may affect FFWS's reliability and the benefits of these systems. Determining the reliability of advanced flood warning systems based on the rainfall–runoff models is a challenge in assessment of the FFWS performance which is the subject of this study. In this paper, a stochastic methodology is proposed to provide the uncertainty band of the rainfall–runoff model and to calculate the probability of acceptable forecasts. The proposed method is based on Monte Carlo simulation and multivariate analysis of the predicted time and discharge error data sets. For this purpose, after the calibration of the rainfall–runoff model, the probability distributions of input calibration parameters and uncertainty band of the model are estimated through the Bayesian inference. Then, data sets of the time and discharge errors are calculated using the Monte Carlo simulation, and the probability of acceptable model forecasts is calculated by multivariate analysis of data using copula functions. The proposed approach was applied for a small watershed in Iran as a case study. The results showed using rainfall–runoff modeling based on real‐time precipitation is not enough to attain high performance for FFWSs in small watersheds, and it seems using weather forecasts as the inputs of rainfall–runoff models is essential to increase lead times and the reliability of FFWSs in small watersheds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
J. J. Yu  X. S. Qin  O. Larsen 《水文研究》2015,29(6):1267-1279
A generalized likelihood uncertainty estimation (GLUE) method incorporating moving least squares (MLS) with entropy for stochastic sampling (denoted as GLUE‐MLS‐E) was proposed for uncertainty analysis of flood inundation modelling. The MLS with entropy (MLS‐E) was established according to the pairs of parameters/likelihoods generated from a limited number of direct model executions. It was then applied to approximate the model evaluation to facilitate the target sample acceptance of GLUE during the Monte‐Carlo‐based stochastic simulation process. The results from a case study showed that the proposed GLUE‐MLS‐E method had a comparable performance as GLUE in terms of posterior parameter estimation and predicted confidence intervals; however, it could significantly reduce the computational cost. A comparison to other surrogate models, including MLS, quadratic response surface and artificial neural networks (ANN), revealed that the MLS‐E outperformed others in light of both the predicted confidence interval and the most likely value of water depths. ANN was shown to be a viable alternative, which performed slightly poorer than MLS‐E. The proposed surrogate method in stochastic sampling is of practical significance in computationally expensive problems like flood risk analysis, real‐time forecasting, and simulation‐based engineering design, and has a general applicability in many other numerical simulation fields that requires extensive efforts in uncertainty assessment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Two lumped conceptual hydrological models, namely tank and NAM and a neural network model are applied to flood forecasting in two river basins in Thailand, the Wichianburi on the Pasak River and the Tha Wang Pha on the Nan River using the flood forecasting procedure developed in this study. The tank and NAM models were calibrated and verified and found to give similar results. The results were found to improve significantly by coupling stochastic and deterministic models (tank and NAM) for updating forecast output. The neural network (NN) model was compared with the tank and NAM models. The NN model does not require knowledge of catchment characteristics and internal hydrological processes. The training process or calibration is relatively simple and less time consuming compared with the extensive calibration effort required by the tank and NAM models. The NN model gives good forecasts based on available rainfall, evaporation and runoff data. The black‐box nature of the NN model and the need for selecting parameters based on trial and error or rule‐of‐thumb, however, characterizes its inherent weakness. The performance of the three models was evaluated statistically. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we extend the generalized likelihood uncertainty estimation (GLUE) technique to estimate spatially distributed uncertainty in models conditioned against binary pattern data contained in flood inundation maps. Untransformed binary pattern data already have been used within GLUE to estimate domain‐averaged (zero‐dimensional) likelihoods, yet the pattern information embedded within such sources has not been used to estimate distributed uncertainty. Where pattern information has been used to map distributed uncertainty it has been transformed into a continuous function prior to use, which may introduce additional errors. To solve this problem we use here ‘raw’ binary pattern data to define a zero‐dimensional global performance measure for each simulation in a Monte Carlo ensemble. Thereafter, for each pixel of the distributed model we evaluate the probability that this pixel was inundated. This probability is then weighted by the measure of global model performance, thus taking into account how well a given parameter set performs overall. The result is a distributed uncertainty measure mapped over real space. The advantage of the approach is that it both captures distributed uncertainty and contains information on global likelihood that can be used to condition predictions of further events for which observed data are not available. The technique is applied to the problem of flood inundation prediction at two test sites representing different hydrodynamic conditions. In both cases, the method reveals the spatial structure in simulation uncertainty and simultaneously enables mapping of flood probability predicted by the model. Spatially distributed uncertainty analysis is shown to contain information over and above that available from global performance measures. Overall, the paper highlights the different types of information that may be obtained from mappings of model uncertainty over real and n‐dimensional parameter spaces. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This paper evaluates the feasibility of using an artificial neural network (ANN) methodology for estimating the groundwater levels in some piezometers placed in an aquifer in north‐western Iran. This aquifer is multilayer and has a high groundwater level in urban areas. Spatiotemporal groundwater level simulation in a multilayer aquifer is regarded as difficult in hydrogeology due to the complexity of the different aquifer materials. In the present research the performance of different neural networks for groundwater level forecasting is examined in order to identify an optimal ANN architecture that can simulate the piezometers water levels. Six different types of network architectures and training algorithms are investigated and compared in terms of model prediction efficiency and accuracy. The results of different experiments show that accurate predictions can be achieved with a standard feedforward neural network trained usung the Levenberg–Marquardt algorithm. The structure and spatial regressions of the ANN parameters (weights and biases) are then used for spatiotemporal model presentation. The efficiency of the spatio‐temporal ANN (STANN) model is compared with two hybrid neural‐geostatistics (NG) and multivariate time series‐geostatistics (TSG) models. It is found in this study that the ANNs provide the most accurate predictions in comparison with the other models. Based on the nonlinear intrinsic ANN approach, the developed STANN model gives acceptable results for the Tabriz multilayer aquifer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Accurate, precise and timely forecasts of flood wave arrival time, depth and velocity at each point of the floodplain are essential to reduce damage and save lives. Current computational capabilities support hydraulic models of increasing complexity over extended catchments. Yet a number of sources of uncertainty (e.g., input and boundary conditions, implementation data) may hinder the delivery of accurate predictions. Field gauging data of water levels and discharge have traditionally been used for hydraulic model calibration, validation and real-time constraint. However, the discrete spatial distribution of field data impedes the testing of the model skill at the two-dimensional scale. The increasing availability of spatially distributed remote sensing (RS) observations of flood extent and water level offers the opportunity for a comprehensive analysis of the predictive capability of hydraulic models. The adequate use of the large amount of information offered by RS observations triggers a series of challenging questions on the resolution, accuracy and frequency of acquisition of RS observations; on RS data processing algorithms; and on calibration, validation and data assimilation protocols. This paper presents a review of the availability of RS observations of flood extent and levels, and their use for calibration, validation and real-time constraint of hydraulic flood forecasting models. A number of conclusions and recommendations for future research are drawn with the aim of harmonising the pace of technological developments and their applications.  相似文献   

12.
Abstract

The accurate prediction of hourly runoff discharge in a watershed during heavy rainfall events is of critical importance for flood control and management. This study predicts n-h-ahead runoff discharge in the Sandimen basin in southern Taiwan using a novel hybrid approach which combines a physically-based model (HEC-HMS) with an artificial neural network (ANN) model. Hourly runoff discharge data (1200 datasets) from seven heavy rainfall events were collected for the model calibration (training) and validation. Six statistical indicators (i.e. mean absolute error, root mean square error, coefficient of correlation, error of time to peak discharge, error of peak discharge and coefficient of efficiency) were employed to evaluate the performance. In comparison with the HEC-HMS model, the single ANN model, and the time series forecasting (ARMAX) model, the developed hybrid HEC-HMS–ANN model demonstrates improved accuracy in recursive n-h-ahead runoff discharge prediction, especially for peak flow discharge and time.  相似文献   

13.
Deterministic flood inundation mapping is valuable for the investigation of detailed flood depth and extent. However, when these data are used for real‐time flood warning, uncertainty arises while encountering the difficulties of timely response, message interpretation and performance evaluation that makes statistical analysis necessary. By incorporating deterministic flood inundation map outputs statistically by means of logistic regression, this paper presents a probabilistic real‐time flood warning model determining region‐based flood probability directly from rainfall, being efficient in computation, clear in message, and valid in physical meaning. The calibration and validation of the probabilistic model show a satisfactory overall correctness rate, with the hit rate far surpassing the false alarm rate in issuing flood warning for historical events. Further analyses show that the probabilistic model is effective in evaluating the level of uncertainty lying within flood warning which can be reduced by several techniques proposed in order to improve warning performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
J.J. Yu 《水文科学杂志》2013,58(12):2117-2131
Abstract

A generalized likelihood uncertainty estimation (GLUE) framework coupling with artificial neural network (ANN) models in two surrogate schemes (i.e. GAE-S1 and GAE-S2) was proposed to improve the efficiency of uncertainty assessment in flood inundation modelling. The GAE-S1 scheme was to construct an ANN to approximate the relationship between model likelihoods and uncertain parameters for facilitating sample acceptance/rejection instead of running the numerical model directly; thus, it could speed up the Monte Carlo simulation in stochastic sampling. The GAE-S2 scheme was to establish independent ANN models for water depth predictions to emulate the numerical models; it could facilitate efficient uncertainty analysis without additional model runs for locations concerned under various scenarios. The results from a study case showed that both GAE-S1 and GAE-S2 had comparable performances to GLUE in terms of estimation of posterior parameters, prediction intervals of water depth, and probabilistic inundation maps, but with reduced computational requirements. The results also revealed that GAE-S1 possessed a slightly better performance in accuracy (referencing to GLUE) than GAE-S2, but a lower flexibility in application. This study shed some light on how to apply different surrogate schemes in using numerical models for uncertainty assessment, and could help decision makers in choosing cost-effective ways of conducting flood risk analysis.  相似文献   

15.
Regional flood frequency analysis (RFFA) is widely used in practice to estimate flood quantiles in ungauged catchments. Most commonly adopted RFFA methods such as quantile regression technique (QRT) assume a log-linear relationship between the dependent and a set of predictor variables. As non-linear models and universal approximators, artificial neural networks (ANN) have been widely adopted in rainfall runoff modeling and hydrologic forecasting, but there have been relatively few studies involving the application of ANN to RFFA for estimating flood quantiles in ungauged catchments. This paper thus focuses on the development and testing of an ANN-based RFFA model using an extensive Australian database consisting of 452 gauged catchments. Based on an independent testing, it has been found that ANN-based RFFA model with only two predictor variables can provide flood quantile estimates that are more accurate than the traditional QRT. Seven different regions have been compared with the ANN-based RFFA model and it has been shown that when the data from all the eastern Australian states are combined together to form a single region, the ANN presents the best performing RFFA model. This indicates that a relatively larger dataset is better suited for successful training and testing of the ANN-based RFFA models.  相似文献   

16.
In many engineering problems, such as flood warning systems, accurate multistep‐ahead prediction is critically important. The main purpose of this study was to derive an algorithm for two‐step‐ahead forecasting based on a real‐time recurrent learning (RTRL) neural network that has been demonstrated as best suited for real‐time application in various problems. To evaluate the properties of the developed two‐step‐ahead RTRL algorithm, we first compared its predictive ability with least‐square estimated autoregressive moving average with exogenous inputs (ARMAX) models on several synthetic time‐series. Our results demonstrate that the developed two‐step‐ahead RTRL network has efficient ability to learn and has comparable accuracy for time‐series prediction as the refitted ARMAX models. We then investigated the two‐step‐ahead RTRL network by using the rainfall–runoff data of the Da‐Chia River in Taiwan. The results show that the developed algorithm can be successfully applied with high accuracy for two‐step‐ahead real‐time stream‐flow forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Artificial neural network (ANN) has been demonstrated to be a promising modelling tool for the improved prediction/forecasting of hydrological variables. However, the quantification of uncertainty in ANN is a major issue, as high uncertainty would hinder the reliable application of these models. While several sources have been ascribed, the quantification of input uncertainty in ANN has received little attention. The reason is that each measured input quantity is likely to vary uniquely, which prevents quantification of a reliable prediction uncertainty. In this paper, an optimization method, which integrates probabilistic and ensemble simulation approaches, is proposed for the quantification of input uncertainty of ANN models. The proposed approach is demonstrated through rainfall-runoff modelling for the Leaf River watershed, USA. The results suggest that ignoring explicit quantification of input uncertainty leads to under/over estimation of model prediction uncertainty. It also facilitates identification of appropriate model parameters for better characterizing the hydrological processes.  相似文献   

18.
Japan has traditionally performed flood prevention through the construction and use of dikes, storage reservoirs, and basins which are costly and time consuming options. Another non-structural option is to operate the flood control system appropriately with a view to reducing flood damage. In this paper, a flood control system combining the runoff prediction model in the whole river basin with the reservoir operation is discussed. Different models of the runoff process are introduced in order to compare their accuracies and the computational time for the flood forecasting system. The reservoir operational rule is formulated in terms of fuzzy inference theory. Historical data are applied in a case study for verification of the proposed theories.  相似文献   

19.
Prediction of factors affecting water resources systems is important for their design and operation. In hydrology, wavelet analysis (WA) is known as a new method for time series analysis. In this study, WA was combined with an artificial neural network (ANN) for prediction of precipitation at Varayeneh station, western Iran. The results obtained were compared with the adaptive neural fuzzy inference system (ANFIS) and ANN. Moreover, data on relative humidity and temperature were employed in addition to rainfall data to examine their influence on precipitation forecasting. Overall, this study concluded that the hybrid WANN model outperformed the other models in the estimation of maxima and minima, and is the best at forecasting precipitation. Furthermore, training and transfer functions are recommended for similar studies of precipitation forecasting.  相似文献   

20.
A short‐term flood inundation prediction model has been formulated based on the combination of the super‐tank model, forced with downscaled rainfall from a global numerical weather prediction model, and a one‐dimensional (1D) hydraulic model. Different statistical methods for downscaled rainfall have been explored, taking into account the availability of historical data. It has been found that the full implementation of a statistical downscaling model considering physically‐based corrections to the numerical weather prediction model output for rainfall prediction performs better compared with an altitudinal correction method. The integration of the super‐tank model into the 1D hydraulic model demonstrates a minimal requirement for the calibration of rainfall–runoff and flood propagation models. Updating the model with antecedent rainfall and regular forecast renewal has enhanced the model's capabilities as a result of the data assimilation processes of the runoff and numerical weather prediction models. The results show that the predicted water levels demonstrate acceptable agreement with those measured by stream gauges and comparable to those reproduced using the actual rainfall. Moreover, the predicted flood inundation depth and extent exhibit reasonably similar tendencies to those observed in the field. However, large uncertainties are observed in the prediction results in lower, flat portions of the river basin where the hydraulic conditions are not properly analysed by the 1D flood propagation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号