首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In the Amazon basin, floodplains form a complex mosaic of freshwater systems with differing morphologies, resulting in varied inundation patterns and heterogeneous chemical and ecological characteristics. In this study, we focused on the Janauacá floodplain, a medium‐sized system (786 km2, including the local watershed) located along the Solimões River. Based on in situ and satellite observations acquired from November 2006 to November 2011, we computed water fluxes between the mainstream and the floodplain and examined the temporal dynamics of floodplain storage from river flooding, rainfall, runoff, and exchanges with groundwater through bank seepage for the 5 years from 2006 to 2011. The mainstream was the main input of water to the flooded area, accounting on average for 93% of total water inputs by the end of the water year. Direct precipitation and runoff from uplands contributed less than or equal to 5% and 10%, respectively. The seepage contribution was less than 1%. Model uncertainties, evaluated using Monte Carlo analysis of the input data and model parameters, showed that all water fluxes were relatively well constrained except for outflow through seepage, which had a standard deviation across simulations greater than 60%. The water balance computation was verified using electrical conductivity as an assumed non‐reactive tracer. Except during periods of very low water, the simulated and measured conductivities agreed well. Moreover, conductivity data analysis confirmed that the Janauacá system can be considered homogeneous in terms of electrical conductivity for filling percentages equal to or greater than 40% (i.e., when the water level is above 19.5 m, generally from April to August) but presented large heterogeneities during the rest of the hydrological cycle.  相似文献   

2.
《水文科学杂志》2013,58(6):953-970
Abstract

The 5000 km2 topographically closed Estancia basin in central New Mexico has been the focus of several palaeoclimatic studies based on changes in the level of late Pleistocene Lake Estancia. A large, unknown volume of surface runoff and groundwater from adjacent mountains contributed to the hydrological balance during highstands and lowstands. The US Department of Agriculture hydrological model SWAT (Soil and Water Assessment Tool) and the US Geological Survey groundwater flow model MODFLOW, with the LAK2 package, were used in this study to estimate runoff and water balance under present climate. A Geographic Information Systems (GIS) interface was used for SWAT, digitized data were applied for soils and vegetation, and limited streamflow data were used to obtain an approximate calibration for the model. Simulated streamflow is generally within 30% of observed values, and simulated runoff for the entire basin is about 8% of the annual inflow volume needed to support lowstands of the former Lake Estancia. Results from the combined models suggest application to other palaeoclimate investigations in semiarid lake basins.  相似文献   

3.
Abstract

Water balance studies with stable water isotopes have rarely been conducted in remote and tropical wetland areas. As such, little is known regarding the water balance and groundwater–surface water interaction in the Pantanal, one of the largest and most pristine wetlands in the world. We applied MINA TrêS, a water balance model utilizing stable water isotopes (δ18O, δ2H) and chloride (Cl-) to assess the dry-season hydrological processes controlling groundwater–surface water interactions and the water balance of six floodplain lakes in the northern Pantanal, Brazil. Qualitatively, all lakes exhibited similarity in hydrological controls. Quantitatively, they differed significantly due to morphological differences in controlling groundwater inflow and lake volume. Our approach is readily transferable to other remote and tropical wetland systems with minimal data input requirements, which is useful in regions with sparse hydrometric monitoring.
Editor Z.W. Kundzewicz  相似文献   

4.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the development and application of a distributed rainfall-runoff model for extreme flood estimation, and its use to investigate potential changes in runoff processes, including changes to the ‘rating curve’ due to effects of over-bank flows, during the transition from ‘normal’ floods to ‘extreme’ floods. The model has two components: a hillslope runoff generation model based on a configuration of soil moisture stores in parallel and series, and a distributed flood routing model based on non-linear storage-discharge relationships for individual river reaches that includes the effects of floodplain geometries and roughnesses. The hillslope water balance model contains a number of parameters, which are measured or derived a priori from climate, soil and vegetation data or streamflow recession analyses. For reliable estimation of extreme discharges that may extend beyond recorded data, the parameters of the flood routing model are estimated from hydraulic properties, topographic data and vegetation cover of compound channels (main channel and floodplains). This includes the effects of the interactions between the main channel and floodplain sections, which tend to cause a change to the rating curve. The model is applied to the Collie River Basin, 2545 km2, in Western Australia and used to estimate the probable maximum flood (PMF) from probable maximum precipitation estimates for this region. When moving from normal floods to the PMFs, application of the model demonstrates that the runoff generation process changes with a substantial increase of saturation excess overland flow through the expansion of saturated areas, and the dominant runoff process in the stream channel changes from in-bank to over-bank flows. The effects of floodplain inundation and floodplain vegetation can significantly reduce the magnitude of the estimated PMFs. This study has highlighted the need for the estimation of a number of critical parameters (e.g. cross-sectional geometry, floodplain vegetation, soil depths) through concerted field measurements or surveys, and targeted laboratory experiments.  相似文献   

7.
Ragab Ragab  John Bromley 《水文研究》2010,24(19):2663-2680
A newly Integrated Hydrological Modelling System (IHMS) has been developed to study the impact of changes in climate, land use and water management on groundwater and seawater intrusion (SWI) into coastal areas. The system represents the combination of three models, which can, if required, be run separately. It has been designed to assess the combined impact of climate, land use and groundwater abstraction changes on river, drainage and groundwater flows, groundwater levels and, where appropriate, SWI. The approach is interdisciplinary and reflects an integrated water management approach. The system comprises three packages: the Distributed Catchment Scale Model (DiCaSM), MODFLOW (96 and 2000) and SWI models. In addition to estimating all water balance components, DiCaSM, produces the recharge data that are used as input to the groundwater flow model of the US Geological Survey, MODFLOW. The latter subsequently generates the head distribution and groundwater flows that are used as input to the SWI model, SWI. Thus, any changes in land use, rainfall, water management, abstraction, etc. at the surface are first handled by DiCaSM, then by MODFLOW and finally by the SWI. The three models operate at different spatial and temporal scales and a facility (interface utilities between models) to aggregate/disaggregate input/output data to meet a desired spatial and temporal scale was developed allowing smooth and easy communication between the three models. As MODFLOW and SWI are published and in the public domain, this article focuses on DiCaSM, the newly developed unsaturated zone DiCaSM and equally important the interfacing utilities between the three models. DiCaSM simulates a number of hydrological processes: rainfall interception, evapotranspiration, surface runoff, infiltration, soil water movement in the root zone, plant water uptake, crop growth, stream flow and groundwater recharge. Input requirements include distributed data sets of rainfall, land use, soil types and digital terrain; climate data input can be either distributed or non‐distributed. The model produces distributed and time series output of all water balance components including potential evapotranspiration, actual evapotranspiration, rainfall interception, infiltration, plant water uptake, transpiration, soil water content, soil moisture (SM) deficit, groundwater recharge rate, stream flow and surface runoff. This article focuses on details of the hydrological processes and the various equations used in DiCaSM, as well as the nature of the interface to the MODFLOW and SWI models. Furthermore, the results of preliminary tests of DiCaSM are reported; these include tests related to the ability of the model to predict the SM content of surface and subsurface soil layers, as well as groundwater levels. The latter demonstrates how the groundwater recharge calculated from DiCaSM can be used as input into the groundwater model MODFLOW using aggregation and disaggregation algorithms (built into the interface utility). SWI has also been run successfully with hypothetical examples and was able to reproduce the results of some of the original examples of Bakker and Schaars ( 2005 ). In the subsequent articles, the results of applications to different catchments will be reported. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Geochemically based hydrograph separation techniques were used in a preliminary assessment to infer how runoff processes change with landscape characteristics and spatial scale (1–233 km2) within a mesoscale catchment in upland Scotland. A two‐component end‐member mixing analysis (EMMA) used Gran alkalinity as an assumed conservative tracer. Analysis indicated that, at all scales investigated, acidic overland flow and shallow subsurface storm flows from the peaty soils covering the catchment headwaters dominated storm runoff generation. The estimated groundwater contribution to annual runoff varied from 30% in the smallest (ca 1 km2) peat‐dominated headwater catchment with limited groundwater storage, to >60% in larger catchments (>30 km2) with greater coverage of more freely draining soils and more extensive aquifers in alluvium and other drift. This simple approach offers a useful, integrated conceptualization of the hydrological functioning in a mesoscale catchment, which can be tested and further refined by focused modelling and process‐based research. However, even as it stands, the simple conceptualization of system behaviour will have significant utility as a tool for communicating hydrological issues in a range of planning and management decisions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In humid tropical systems, the large intraseasonal and interannual variability of rainfall can significantly affect all components of the water balance. This variability and the lack of detailed hydrological and meteorological data in both temporal and spatial scales have created uncertainties regarding the closure of the water balance for the Amazon basin. Previous studies in Amazonian micro‐catchments suggested that both the unsaturated and groundwater system, which are not taken into consideration in basin‐wide water budgets published in the literature, play an important role in controlling the timing of runoff generation. In this paper, the components of the water balance and the variations in different storages within the system were examined using 3 years' data from a 6·58 km2 micro‐catchment in central Amazonia. The role and relative importance of the various stores were examined. The results show a strong memory effect in the groundwater system that carries over seasonal climate anomalies from one year to the next and affects the hydrological response well beyond the time span of the anomaly. In addition, the deep unsaturated zone was found to play a key role in reducing most of the intraseasonal variability and also affected the groundwater recharge. This memory effect is crucial for sustaining streamflow and evaporation in years with rainfall deficiency. The memory effect caused by storage in the groundwater and unsaturated systems may also prevent the closure of annual large‐scale water balances, which assume that storage returns to a standard state each year. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Submarine groundwater discharges (SGD) were investigated in a marine watershed in south‐eastern Korea using water budget analysis and a 222Rn mass balance model. Multi‐layered TOPMODEL added hydrological assumption was used to estimate groundwater components in the water budget analysis. Field observations of soil moisture, rainfall, runoff and groundwater fluctuations were used for calibration and validation of the hydrologic model. Based on observed hydrological data and terrain analyses, parameters for the hydrologic model were delineated and used to describe several hydrologic responses in the watershed. SGD estimations by 222Rn mass balance method were also performed at Il‐Gwang bay in July, 2010, and May, June, July and Nov. 2011. The estimated groundwater through hydrologic modeling and water balance analysis was 1.3x106 m3/year, which rapidly increased during typhoon season due to heavy rainfall and permeable geologic structure. The estimated groundwater was approximately 3.7–27.1% of SGD as evaluated by 222Rn mass balance method ranges 3.44 and 17.45 m3m?2year?1. Even though SGD is predominantly influenced by tide fluctuation, the head gradient (difference) from hydrologic processes associated with heavy rainfalls can also have extra significant influences. Comprehensive understanding of SGD evaluation can be improved through a simultaneous application of both these approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The protection of the globally widespread lentic small water bodies (LSWB) must be based on detailed knowledge about their hydrological connectivity and water balance. The study aimed to identify and quantify water balance components as well as surface-groundwater interaction of two LSWB in a characteristic lowland region with a combination of different methods. This includes the collection of hydrological data and the use of bromide and water stable isotopes (δ2H and δ18O) as tracers. With their help, mixing models were established, and daily water balances were assessed. The results show a strong bidirectional interaction of both LSWB systems with shallow groundwater. Bromide and stable isotope tracers allowed for the identification of the most relevant in- and outflow sources and pathways. Thereby, isotope data revealed isotopic enrichment typical for open-water bodies and only minor precipitation inputs mainly relevant at the end of the dry season. Water balance calculations suggested accentuated seasonal dynamics that were strongly influenced by shallow groundwater, which represented large inputs into both LSWB. By that, different phases could be identified, with high inflow rates in winter and spring and decreasing fluxes in summer. In one LSWB, a drainage system was found to have a major impact next to the shallow groundwater interaction. The findings of this research provide detailed insights into the influence and importance of shallow groundwater for LSWB in lowland regions. This impacts the diffuse input of agricultural pollutants into these ecologically important landscape features.  相似文献   

13.
Water budget analyses are important for the evaluation of the water resources in semiarid and arid regions. The lack of observed data is the major obstacle for hydrological modelling in arid regions. The aim of this study is the analysis and calculation of the natural water resources of the Western Dead Sea subsurface catchment, one which is highly sensitive to rainfall resulting in highly variable temporal and spatial groundwater recharge. We focus on the subsurface catchment and subsequently apply the findings to a large‐scale groundwater flow model to estimate the groundwater discharge to the Dead Sea. We apply a semidistributed hydrological model (J2000g), originally developed for the Mediterranean, to the hyperarid region of the Western Dead Sea catchment, where runoff data and meteorological records are sparsely available. The challenge is to simulate the water budget, where the localized nature of extreme rainstorms together with sparse runoff data results in few observed runoff and recharge events. To overcome the scarcity of climate input data, we enhance the database with mean monthly rainfall data. The rainfall data of 2 satellites are shown to be unsuitable to fill the missing rainfall data due to underrepresentation of the steep hydrological gradient and temporal resolution. Hydrological models need to be calibrated against measured values; hence, the absence of adequate data can be problematic. Therefore, our calibration approach is based on a nested strategy of diverse observations. We calculate a direct surface runoff of the Western Dead Sea surface area (1,801 km2) of 3.4 mm/a and an average recharge (36.7 mm/a) for the 3,816 km2 subsurface drainage basin of the Cretaceous aquifer system.  相似文献   

14.
Natural tracers (alkalinity and silica) were used to infer groundwater–surface‐water exchanges in the main braided reach of the River Feshie, Cairngorms, Scotland. Stream‐water samples were collected upstream and downstream of the braided section at fortnightly intervals throughout the 2001–2002 hydrological year and subsequently at finer resolution over two rainfall events. The braided reach was found to exert a significant downstream buffering effect on the alkalinity of these waters, particularly at moderate flows (4–8 m3 s?1/?Q30–70). Extensive hydrochemical surveys were undertaken to characterize the different source waters feeding the braids. Shallow groundwater flow systems at the edge of the braided floodplain, recharged by effluent streams and hillslope drainage, appeared to be of particular significance. Deeper groundwater was identified closer to the main channel, upwelling through the hyporheic zone. Both sources contributed to the significant groundwater–surface‐water interactions that promote the buffering effect observed through the braided reach. Their impact was less significant at higher flows (>15 m3 s?1/>Q10) when acidic storm runoff from the peat‐covered catchment headwaters dominated, as well as under baseflow conditions (<4 m3 s?1/<Q70), when upstream alkalinity was already buffered owing to headwater groundwater sources assuming dominance. The significant temporally and spatially dynamic influence of these groundwater–surface‐water interactions was therefore seen to have important implications for both catchment functioning and instream ecology. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Earlier efforts have been geared towards modelling the hydrological water balance of the Mackenzie River basin and its sub‐basins using a coupled land surface–hydrological model for the Canadian cold region known as WATCLASS. The goal of this current study is to effectively inter‐compare the resulting total water storage anomalies estimated from the gravity recovery and climate experiment (GRACE) satellite analysis with those estimated from the atmospheric‐based water balance approach as well as the model output from WATCLASS over the 1 · 8 × 106 km2 Mackenzie River basin in Canada. Since the success of the parameter estimation stage of the coupled land surface–hydrological model, WATCLASS over this large catchment, was entirely based on a goodness of fit between the simulated and observed flows, it is often desirable to assess the reliability of the generated state variables prior to concluding on the overall efficiency of this model in reproducing the relevant hydrological processes over this region. A major challenge here lies in finding suitable dataset with which this comparison can be made to further assess the ability of the model in accurately reproducing other mass fluxes. The outcome of this inter‐comparison reveals the potential application of the GRACE‐based approach as a veritable tool required for the closure of the hydrological water balance of the Mackenzie River basin as well as serving as a dependable source of data for the calibration of traditional hydrological models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Given that the concentration of 222Rn in groundwater is much higher than that in surface water and that its radioactive half‐life (3.83 d) is short, 222Rn is an effective tracer of groundwater–surface water interactions. In this study, a new mass balance method is presented, which can be used to estimate specific groundwater–surface water interactions within a river reach. Three possible situations of interaction between groundwater and surface water are considered, and equations based on the mass conservation of 222Rn are formulated for judging specific groundwater–surface water interaction processes and for calculating water flux. A case study was conducted for the Nalenggele River, Northwest China, to demonstrate the usefulness of this method. Samples of river water and groundwater containing 222Rn were collected from the study area to estimate the interactions between groundwater and surface water. The amount of water exchanged during these interactions was estimated and the results show that transformations between groundwater and surface water are frequent along the stream. The 222Rn mass balance method is highly sensitive for studying such interactions, even in areas for which conventional hydrologic data are sparse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In coastal wetland, groundwater is influenced by both tidal processes and land hydrological processes. To study the influences of tidal processes and river runoff on the shallow groundwater dynamic in coastal wetland of the Yellow River Delta, surface and shallow groundwater depth were monitored. It was found that in the east part of the study area where close to the shoreline, surface is characteristic of obvious periodicity, the fluctuation of surface water was mainly controlled by tidal processes. As to the shallow groundwater, fluctuation of water depth is also influenced by the tidal process and has obvious periodicity similar to the surface water. In the north part of the study area, the shallow groundwater is mainly influenced by the Yellow River runoff. The influence distance of tidal processes and river runoff on shallow groundwater system is 14 700 and 11 600 m, respectively.  相似文献   

18.
Precipitation runoff is a critical hillslope hydrological process for downslope streamflow and piedmont/floodplain recharge. Shimen hillslope micro‐catchment is strategically located in the central foothill region of Taihang Mountains, where runoff is crucial for water availability in the piedmont corridors and floodplains of north China. This study analyzes precipitation‐runoff processes in the Shimen hillslope micro‐catchment for 2006–2008 using locally designed runoff collection systems. The study shows that slope length is a critical factor, next only to precipitation, in terms of runoff yield. Regression analysis also shows that runoff is related positively to precipitation, and negatively to slope length. Soil mantle in the study area is generally thin and is therefore not as critical a runoff factor as slope length. The study shows a significant difference between overland and subsurface runoff. However, that between the 0–10 and 10–20 cm subsurfaces is insignificant. Runoff hardly occurs under light rains (<10 mm), but is clearly noticeable under moderate‐to‐rainstorm events. In the hillslope catchment, vertical infiltration (accounting for 42–84% of the precipitation) dominates runoff processes in subsurface soils and weathered granite gneiss bedrock. A weak lateral flow (at even the soil/bedrock interface) and the generally small runoff suggest strong infiltration loss via deep percolation. This is critical for groundwater recharge in the downslope piedmont corridors and floodplains. This may enhance water availability, ease water shortage, avert further environmental degradation, and reduce the risk of drought/flood in the event of extreme weather conditions in the catchment and the wider north China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   

20.
The proposed harvesting of previously undeveloped forests in north coastal British Columbia requires an understanding of hydrological responses. Hydrometric and isotopic techniques were used to examine the hydrological linkages between meteoric inputs to the surface‐groundwater system and runoff response patterns of a forest‐peatland complex. Quickflow accounted for 72–91% of peak storm discharge. The runoff ratio was lowest for open peatland areas with thick organic horizons (0·02–0·05) due to low topographic gradients and many surface depressions capable of retaining surface water. Runoff ratio increased comparatively for ephemeral surface seep flows (0·06–0·40) and was greatest in steeply sloping forest communities with more permeable soils (0·33–0·69). The dominant mechanism for runoff generation was saturated shallow subsurface flow. Groundwater fluxes from the organic horizon of seeps (1·70–1·72 m3 day?1 m?1) were an important component of quickflow. The homogeneous δ2H? δ18O composition of groundwater indicated attenuation of the seasonal rainfall signal by mixing during recharge. The positive correlation (r2 = 0·64 and 0·38, α = 0·05) between slope index and δ18O values in groundwater suggests that the spatial pattern in the δ18O composition along the forest‐peatland complex is influenced by topography and provides evidence that topographic indices may be used to predict groundwater residence time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号