首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨素  万荣荣  李冰 《湖泊科学》2022,34(4):1055-1074
水文连通性作为连接河湖水体间物质、能量及信息传递与交换的关键纽带,对水环境、水生态和生境状况具有联动与触发反馈作用,已成为水文学、水利学和生态学等诸多领域的研究热点.太湖流域作为全国典型的流域性密集平原河网区,在快速城镇化背景下,河湖水文连通关系变化剧烈并引起了一系列生态环境效应.本文以水文连通性概念与内涵为背景,对太湖流域水文连通性研究进行了综述.太湖流域水文连通性评价方法以图论法、景观格局指数及水文连通性函数等方法联合使用为主,且聚焦于区域尺度研究;演变过程按人类活动影响强度大致划分为自然水系形成阶段、古代人类活动影响阶段和现代人类活动影响阶段;气候变化和人类活动共同影响着太湖流域水文连通性变化,近百年来水利工程建设和城市化进程等人类活动的影响尤为剧烈;良好的水文连通性有利于汛期减轻流域洪涝灾害及非汛期保障水资源供给,但水文连通性的提高对水环境和水生态的效应由于涉及因素众多尚存在争议.针对当前研究现状和存在问题,提出(1)平原河网区水文连通性的定量表征与评估是水文连通性研究的前提;(2)定量解析流域水文连通性的驱动机制是水文连通性研究的重点;(3)深入跟踪大型引水调水工程对流域水文连通影响及其效应是一项长期任务;(4)兼顾环境生态效应的水利工程生态化改造研究,开展工程控制背景下的流域水文连通多目标优化调控,是实现太湖流域洪水调蓄、水资源供给、水环境净化、生物多样性维持等生态系统服务协同提升的重要途径.  相似文献   

2.
Although connectivity is acknowledged as a key factor of a catchment hydrological behaviour, it still misses reference evaluation methodologies. Therefore the objective of the paper is to evaluate different quantitative indicators of hydrological connectivity, using the concepts of structural and functional connectivity commonly used in ecology. The indicators were tested on contrasted numerical fields of micro-topography that present distinct hydrological responses.  相似文献   

3.
The degree of hydrological connectivity is mainly determined by the spatial organisation of heterogeneity. A meaningful and aggregate abstraction of spatial patterns is one of the promising means to gain fundamental insights into this complex interaction and can, moreover, be used as a tool to acquire a profound understanding of the major controls of catchment hydrology. In order to disclose such controls, pattern‐process relationships and the explanatory power of landscape metrics were tested by simulating the runoff of differently patterned virtual basins, generated by neutral landscape models and fractal networks and solved by a surface hydrological model composed of kinematic wave routing and Green‐Ampt infiltration. A total of 23 landscape metrics quantified the spatial patterns and were subsequently related to the functional connectivity, assessed as the proportion of internal runoff generation constituting the hydrological response at the outlet. Landscape metrics allowed the identification of dominant features of heterogeneity that explained the observed connectivity, and to disclose changes in control with class abundance. Therefore, landscape metrics are a useful tool for basin comparison and classification in terms of the dominant processes and the corresponding model structure requirements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomorphology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to characterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating boundaries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape functioning. © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Streamflow response in Boreal Plains catchments depends on hydrological connectivity between forested uplands, lakes, and peatlands, and their hydrogeomorphic setting. Expected future drying of the Boreal Plains ecozone is expected to reduce hydrological connectivity of landscape units. To better understand run‐off generation during dry periods, we determined whether peatland and groundwater connectivity can dampen expected future water deficits in forests and lakes. We studied Pine Fen Creek catchment in the Boreal Plains ecozone of central Saskatchewan, Canada, which has a large, valley‐bottom, terminally positioned peatland, two lakes, and forested uplands. A shorter intensive study permitted a more detailed partitioning of water inputs and outputs within the catchment during the low flow period, and an assessment of a 10‐year data set provided insight into the function of the peatland over a range of climate conditions. Using a water balance approach, we learned that two key processes regulate flow of Pine Fen Creek. The cumulative impact of landscape unit hydrological connectivity and the peatland's hydrological functional state were needed to understand catchment response. There was evidence of a run‐off threshold which, when crossed, changed the peatland's hydrological function from transmission to run‐off generation. Results also suggest the peatland should behave more often as a transmitter of groundwater than as a generator of run‐off under a drier climate future, owing to a reduced water supply.  相似文献   

6.
Numerous studies have examined the impact of prairie pothole wetlands on overall watershed dynamics. However, very few have looked at individual wetland dynamics across a continuum of alteration status using subdaily hydrometric data. Here, the importance of surface and subsurface water storage dynamics in the prairie pothole region was documented by (1) characterizing surface fill–spill dynamics in intact and consolidated wetlands; (2) quantifying water‐table fluctuations and the occurrence of overland flow downslope of fully drained wetlands; (3) assessing the relation (or lack thereof) between intact, consolidated or drained wetland hydrological behaviour, and stream dynamics; and (4) relating wetland hydrological behaviour to landscape characteristics. Focus was on southwestern Manitoba, Canada, where ten intact, three consolidated, seven fully drained wetlands, and a nearby creek were monitored over two years with differing antecedent storage conditions. Hourly hydrological time series were used to compute behavioural metrics reflective of year‐specific and season‐specific wetland dynamics. Behavioural metrics were then correlated to wetland physical characteristics to identify landscape controls on wetland hydrology. Predictably, more frequent spillage or overland flow was observed when antecedent storage was high. Consolidated wetlands had a high degree of water permanence and a greater frequency of fill–spill events than intact wetlands. Shallow and highly responsive water tables were present downslope of fully drained wetlands. Potential wetland–stream connectivity was also inferred via time‐series analysis, while some landscape characteristics (e.g., wetland surface, catchment area, and storage volume) strongly correlated with wetland behavioural metrics. The nonstationarity of dominant processes was, however, evident through the lack of consistent correlations across seasons. This, therefore, highlights the importance of combining multiyear high‐frequency hydrometric data and detailed landscape analyses in wetland hydrology studies.  相似文献   

7.
A major challenge for geomorphologists is to scale up small‐magnitude processes to produce landscape form, yet existing approaches have been found to be severely limited. New ways to scale erosion and transfer of sediment are thus needed. This paper evaluates the concept of sediment connectivity as a framework for understanding processes involved in sediment transfer across multiple scales. We propose that the concept of sediment connectivity can be used to explain the connected transfer of sediment from a source to a sink in a catchment, and movement of sediment between different zones within a catchment: over hillslopes, between hillslopes and channels, and within channels. Using fluvial systems as an example we explore four scenarios of sediment connectivity which represent end‐members of behaviour from fully linked to fully unlinked hydrological and sediment connectivity. Sediment‐travel distance – when combined with an entrainment parameter reflecting the frequency–magnitude response of the system – maps onto these end‐members, providing a coherent conceptual model for the upscaling of erosion predictions. This conceptual model could be readily expanded to other process domains to provide a more comprehensive underpinning of landscape‐evolution models. Thus, further research on the controls and dynamics of travel distances under different modes of transport is fundamental. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Digital flow networks derived from digital elevation models (DEMs) sensitively react to errors due to measurement, data processing and data representation. Since high‐resolution DEMs are increasingly used in geomorphological and hydrological research, automated and semi‐automated procedures to reduce the impact of such errors on flow networks are required. One such technique is stream‐carving, a hydrological conditioning technique to ensure drainage connectivity in DEMs towards the DEM edges. Here we test and modify a state‐of‐the‐art carving algorithm for flow network derivation in a low‐relief, agricultural landscape characterized by a large number of spurious, topographic depressions. Our results show that the investigated algorithm reconstructs a benchmark network insufficiently in terms of carving energy, distance and a topological network measure. The modification to the algorithm that performed best, combines the least‐cost auxiliary topography (LCAT) carving with a constrained breaching algorithm that explicitly takes automatically identified channel locations into account. We applied our methods to a low relief landscape, but the results can be transferred to flow network derivation of DEMs in moderate to mountainous relief in situations where the valley bottom is broad and flat and precise derivations of the flow networks are needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The longitudinal functional connectivity of a river–lake–marsh system (RLMS) refers to the actual water-mediated transport of material from upstream to downstream areas along a spatial gradient and is fundamental to understand hydrological and biogeochemical cycles. However, due to a lack of consensus on appropriate data and methods, the quantification of connectivity is still a challenge, especially at the catchment scale. We developed a new method to evaluate longitudinal functional connectivity based on fluxes of materials (water, sediment, and chemicals) along a RLMS. The calculation of fluxes is based on the longitudinal pattern of terrain gradient, which influences transport efficiency, and on contributions from hillslopes, which set the initial spatial template of material loading to the RLMS. We evaluate the contributions from hillslopes to RLMS based on a new modified version of the index of sediment connectivity (IC) proposed by Borselli et al. (2008) and revised by Chartin et al. (2017).We applied this method to the Baiyangdian Basin covering an area of 3.4 × 104 km2 in China and quantified longitudinal functional connectivity during normal, wet, and dry periods(April, July and December) in year 2016. We found that areas with good structural connectivity exhibited poor functional connectivity during the normal and dry periods. Modelling testing with discharge data from hydrological stations and measured chemicals from Baiyangdian Lake was satisfactory in test periods. We conclude that public data and Digital Elevation Model-derived information can be used to reliably map the longitudinal functional connectivity of RLMSs. The proposed method provides a useful tool for monitoring and restoring the longitudinal functional connectivity of RLMSs and our results indicate that efforts aimed at restoring functional connectivity in RLMSs should take into account landscape patterns that can greatly influence fluxes in the watershed.  相似文献   

10.
Wildfires can impact streamflow by modifying net precipitation, infiltration, evapotranspiration, snowmelt, and hillslope run‐off pathways. Regional differences in fire trends and postwildfire streamflow responses across the conterminous United States have spurred concerns about the impact on streamflow in forests that serve as water resource areas. This is notably the case for the Western United States, where fire activity and burn severity have increased in conjunction with climate change and increased forest density due to human fire suppression. In this review, we discuss the effects of wildfire on hydrological processes with a special focus on regional differences in postwildfire streamflow responses in forests. Postwildfire peak flows and annual water yields are generally higher in regions with a Mediterranean or semi‐arid climate (Southern California and the Southwest) compared to the highlands (Rocky Mountains and the Pacific Northwest), where fire‐induced changes in hydraulic connectivity along the hillslope results in the delivery of more water, more rapidly to streams. No clear streamflow response patterns have been identified in the humid subtropical Southeastern United States, where most fires are prescribed fires with a low burn severity, and more research is needed in that region. Improved assessment of postwildfire streamflow relies on quantitative spatial knowledge of landscape variables such as prestorm soil moisture, burn severity and correlations with soil surface sealing, water repellency, and ash deposition. The latest studies furthermore emphasize that understanding the effects of hydrological processes on postwildfire dynamic hydraulic connectivity, notably at the hillslope and watershed scales, and the relationship between overlapping disturbances including those other than wildfire is necessary for the development of risk assessment tools.  相似文献   

11.
Hydrological and biogeochemical processes in karst environments are strongly controlled by heterogeneous fracture-conduit networks. Quantifying the spatio-temporal variability of water transit time and young water fractions in such heterogeneous hydrogeological systems is fundamental to linking discharge and water quality dynamics in the karst critical zone. We used a tracer-aided conceptual hydrological model to track the fate of each hour of rain input individually. Using this approach, the variability of transit time distributions and young water fraction were estimated in the main landscape units in a karst catchment of Chenqi in Guizhou Province, Southwest China. The model predicted that the mean young water (i.e., <~2 months old) fraction of ground conduit flow is 0.31. Marked seasonal variabilities in water storage and hydrological connectivity between the conduit network and fractured matrix, as well as between hillslopes and topographic depression, drive the dynamics of young water fraction and travel time distributions in each landscape unit. Especially, the strong hydrological connectivity between the land surface and underground conduits caused by the direct infiltration through large fractures and sinkholes, leads the drastic increasement in young water fraction of runoff after heavy rain. Even though the contribution of young water to runoff is greater, the strong mixing and drainage of small fractures accelerate the old water release during high flows during the wet season. It is notable that the young water may sometimes be the most contaminated component contributing to the underground conduit network in karst catchments, because of the direct transfer of contaminants from the ground surface with rain water via large fractures and sinkholes.  相似文献   

12.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous landscape‐scale ecological functions, many of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field‐validated, landscape‐scale approaches for classifying wetlands on the basis of their expected degree of hydrologic connectivity with stream networks. This study quantified seasonal variability in surface hydrologic connectivity (SHC) patterns between forested Delmarva bay wetland complexes and perennial/intermittent streams at 23 sites over a full‐water year (2014–2015). Field data were used to develop metrics to predict SHC using hypothesized landscape drivers of connectivity duration and timing. Connection duration was most strongly related to the number and area of wetlands within wetland complexes as well as the channel width of the temporary stream connecting the wetland complex to a perennial/intermittent stream. Timing of SHC onset was related to the topographic wetness index and drainage density within the catchment. Stepwise regression modelling found that landscape metrics could be used to predict SHC duration as a function of wetland complex catchment area, wetland area, wetland number, and soil available water storage (adj‐R2 = 0.74, p < .0001). Results may be applicable to assessments of forested depressional wetlands elsewhere in the U.S. Mid‐Atlantic and Southeastern Coastal Plain, where climate, landscapes, and hydrological inputs and losses are expected to be similar to the study area.  相似文献   

14.
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Surface runoff on agricultural fields arises when rainfall exceeds infiltration. Excess water ponding in and flowing through local microtopography increases the hydrological connectivity of fields. In turn, an increased level of hydrological connectivity leads to a higher surface runoff flux at the field boundaries. We investigated the functional hydrological connectivity of synthetical elevation fields with varying statistical properties. For this purpose, we developed an object-oriented ponding and redistribution model to which Philip’s infiltration model was coupled. The connectivity behaviour is determined by the presence of depressions with a large area and spatial organization of microtopography in rills or channels. The presence of microdepressions suppresses the effect of the spatial variation of infiltration properties. Connectivity behaviour of a field with a varying spatial distribution of infiltration properties can be predicted by transforming the unique connectivity function that was defined for a designated microtopography.  相似文献   

16.
The Marcell Experimental Forest (MEF) in northern Minnesota, USA, with hydrological research and monitoring of peatland catchments in a low-topographic relief landscape, contrasts with the mountainous terrain that typifies most research catchments. Six research catchments were instrumented and hydrological and meteorological monitoring was initiated during 1960. Paired-catchment studies, which started during 1969, have been used to assess land management and environmental change effects on forests, water availability, and biogeochemistry. Over the decades, the research and collaborations have proliferated to include new monitoring and ecosystem experiments. We provide an overview of available datasets and access information for hydrological and meteorological data. Data on streamflow, water table elevation, precipitation, snow, ground frost, air temperature, soil moisture, upland runoff, and water chemistry are discoverable with associated metadata and are archived through several Web-based, community repositories. The research programme is ongoing and we anticipate updates on an annual or more frequent basis. Additionally, we aim to release other physical, chemical, and isotopic measurements associated with long-term catchment monitoring and studies at the MEF.  相似文献   

17.
Hydrological connectivity describes the physical coupling (linkages) of different elements within a landscape regarding (sub‐) surface flows. A firm understanding of hydrological connectivity is important for catchment management applications, for example, habitat and species protection, and for flood resistance and resilience improvement. Thinking about (geomorphological) systems as networks can lead to new insights, which has also been recognized within the scientific community, seeing the recent increase in the use of network (graph) theory within the geosciences. Network theory supports the analysis and understanding of complex systems by providing data structures for modelling objects and their linkages, and a versatile toolbox to quantitatively appraise network structure and properties. The objective of this study was to characterize and quantify overland flow connectivity dynamics on hillslopes in a humid sub‐Mediterranean environment by using a combination of high‐resolution digital‐terrain models, overland flow sensors and a network approach. Results showed that there are significant differences between overland flow connectivity on agricultural areas and semi‐natural shrubs areas. Significant positive correlations between connectivity and precipitation characteristics were found. Significant negative correlations between connectivity and soil moisture were found, most likely because of soil water repellency and/or soil surface crusting. The combination of structural networks and dynamic networks for determining potential connectivity and actual connectivity proved a powerful tool for analysing overland flow connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
鄱阳湖碟形湖生物群落分布特征很大程度上受区域与主湖区水文连通性影响。由于水位波动,东部湖湾水文连通性受鄱阳湖主湖体水位影响较为敏感。本文以东部湖湾为例,分析主湖区水位变异程度及其影响,并从连通天数和发生时间等方面定量表征东部湖湾与主湖区的水文连通性,进而讨论水文连通性变化及其对湿地植物生境和候鸟栖息地的潜在影响。结果表明,当水位在13~16 m时,东部湖湾与主湖区存在着良好的水文连通关系,湿地植物适宜生境面积最大。2003年以后,鄱阳湖主湖区水位普遍降低,低枯水位持续时间延长,IHA/RVA法分析表明主湖区水位发生了中等程度改变,整体改变度为40.2%,东部湖湾与主湖区的连通关系发生明显改变,年连通天数减少了46.2 d,变化幅度为15.9%,而非连通期发生时间提前约1个月且年内时间跨度更长。水文连通性减弱造成3 10月东部湖湾平均水位下降了0.6 m,其中9 10月减少了约1 m,使薹草(Carexsp.)和苦草(Vallisneria natans)适宜水深对应的水面面积在多数月份呈增加趋势,特别是9 10月(幅度超过40%),但枯水提前导致沉水植物面积减少,湿生植物生物量增加。水...  相似文献   

19.
Hydrological connectivity is a critical determinant of wetland functions and health, especially in wetlands that have been heavily fragmented and regulated by human activities. However, investigating hydrological connectivity in these wetlands is challenging due to the costs of high-resolution and large-scale monitoring required in order to identify hydrological barriers within the wetlands. To overcome this challenge, we here propose an interferometric synthetic aperture radar (InSAR)-based methodology to map hydrologic connectivity and identify hydrological barriers in fragmented wetlands. This methodology was applied along 70 transects across the Baiyangdian, the largest freshwater wetland in northern China, using Sentinel 1A and 1B data, covering the period 2016–2019. We generated 58 interferograms providing information on relative water level changes across the transects that showed the high coherence needed for the assessment of hydrological connectivity. We mapped the permanent and conditional (temporary) barriers affecting connectivity. In total, 11% of all transects are permanently disconnected by hydrological barriers across all interferograms and 58% of the transects are conditionally disconnected. Areas covered by reed grasslands show the most undisturbed hydrological connectivity while some of these barriers are the result of ditches and channels within the wetland and low water levels during different periods of the year. This study highlights the potential of the application of Wetland InSAR to determine hydrological connectivity and location of hydrological barriers in highly fragmented wetlands, and facilitates the study of hydrological processes from large spatial scales and long-time scales using remote sensing technique.  相似文献   

20.
The Arctic is warming at an unprecedented rate. We hypothesis that as seasonally frozen soils thaw and recede in extent as a response to this warming, flow path diversity and thus hydrologic connectivity increases. This enhanced hydrologic connectivity then increases the non-linearity of the storage-discharge relationship in a catchment. The objective of this study is to test this hypothesis by quantifying trends and spatio-temporal differences in the degree of linearity in the storage-discharge relationships for 16 catchments within Northern Sweden from 1950 to 2018. We demonstrate a clear increase in non-linearity of the storage-discharge relationship over time for all catchments with 75% showing a statistically significant increase in non-linearity. Spring has significantly more linear storage-discharge relationships than summer for most catchments (75%) supporting the idea that seasonally frozen soils with a low degree of hydrological connectivity have a linear storage-discharge relationship. For the period considered, spring also showed greater change in storage-discharge relationship trends than summer signifying that changes in recessions are primarily occurring during the thawing period. Separate storage-discharge analyses combined with preceding winter conditions demonstrated that especially cold winters with little snow yielded springs and summers with more linear storage-discharge relationships. We show that streamflow recession analysis reflects ongoing hydrological change of an arctic landscape as well as offering new metrics for tracking change across arctic and sub-arctic landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号