首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
The eddy covariance and energy balance method was employed to determine evapotranspiration (LE) over a wet temperate C3–C4 co‐existing grassland in Japan. After sensible heat flux (H) was estimated via the eddy covariance technique, LE was calculated as the residual of the energy budget with calibration against the direct measurements of LE by a lysimeter. Daily mean LE varied from 0·8 to 10·5 MJ d−1, with a peak at 16·5 MJ d−1 in late July to early August. Day‐to‐day and seasonal variability in LE was affected appreciably by net radiation (Rn), atmospheric vapour pressure deficit (VPD), canopy surface conductance (gc) and leaf area index (LAI). Before the canopy closure, LE responded to LAI in a linear manner. However, LE decreased with increasing LAI later in summer. Daytime variation in the decoupling coefficient (Ω) demonstrates that the canopy decoupled from the atmosphere in the morning and LE was primarily driven by the available energy, while in the afternoon the canopy partially coupled to the atmosphere so that LE was sensitive to VPD and gc. Throughout the whole measurement period, Ω was generally larger than 0·5, suggesting that the available energy contributes more to LE than VPD. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, we examined the year 2011 characteristics of energy flux partitioning and evapotranspiration of a sub‐alpine spruce forest underlain by permafrost on the Qinghai–Tibet Plateau (QPT). Energy balance closure on a half‐hourly basis was H + λE = 0.81 × (Rn ? G ? S) + 3.48 (W m?2) (r2 = 0.83, n = 14938), where H, λE, Rn, G and S are the sensible heat, latent heat, net radiation, soil heat and air‐column heat storage fluxes, respectively. Maximum H was higher than maximum λE, and H dominated the energy budget at midday during the whole year, even in summer time. However, the rainfall events significantly affected energy flux partitioning and evapotranspiration. The mean value of evaporative fraction (Λ = λE/(λE + H)) during the growth period on zero precipitation days and non‐zero precipitation days was 0.40 and 0.61, respectively. The mean daily evapotranspiration of this sub‐alpine forest during summer time was 2.56 mm day?1. The annual evapotranspiration and sublimation was 417 ± 8 mm year?1, which was very similar to the annual precipitation of 428 mm. Sublimation accounted for 7.1% (30 ± 2 mm year?1) of annual evapotranspiration and sublimation, indicating that the sublimation is not negligible in the annual water balance in sub‐alpine forests on the QPT. The low values of the Priestley–Taylor coefficient (α) and the very low value of the decoupling coefficient (Ω) during most of the growing season suggested low soil water content and conservative water loss in this sub‐alpine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Seasonal changes in the water and energy exchanges over a pine forest in eastern Siberia were investigated and compared with published data from a nearby larch forest. Continuous observations (April to August 2000) were made of the eddy‐correlation sensible heat flux and latent heat flux above the canopy. The energy balance was almost closed, although the sum of the turbulent fluxes sometimes exceeded the available energy flux (Rn ? G) when the latent heat flux was large; this was related to the wind direction. We examined the seasonal variation in energy balance components at this site. The seasonal variation and magnitude of the sensible heat flux (H) was similar to that of the latent heat flux (λE), with maximum values occurring in mid‐June. Consequently, the Bowen ratio was around 1·0 on many days during the study period. On some clear days just after rainfall, λE was very large and the sum of H and λE exceeded Rn ? G. The evapotranspiration rate above the dry canopy from May to August was 2·2 mm day?1. The contributions of understory evapotranspiration (Eu) and overstory transpiration (Eo) to the evapotranspiration of the entire ecosystem (Et) were both from 25 to 50% throughout the period analysed. These results suggest that Eu plays a very important role in the water cycle at this site. From snowmelt through the tree growth season (23 April to 19 August 2000), the total incoming water, comprised of the sum of precipitation and the water equivalent of the snow at the beginning of the melt season, was 228 mm. Total evapotranspiration from the forest, including interception loss and evaporation from the soil when the canopy was wet, was 208–254 mm. The difference between the incoming and outgoing amounts in the water balance was from +20 to ?26 mm. The water and energy exchanges of the pine and larch forest differed in that λE and H increased slowly in the pine forest, whereas λE increased rapidly in the larch forest and H decreased sharply after the melting season. Consequently, the shape of the Bowen ratio curves at the two sites differed over the period analysed, as a result of the differences in the species in each forest and in soil thawing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Daily evapotranspiration from a winter wheat field on the North China Plain measured by large‐scale weighing lysimeter was linearly related to that measured by the Bowen ratio energy balance (BREB) technique. Soil evaporation averaged about 23·6% of evapotranspiration from the post‐winter dormancy revival stage to the grain ripening stage in 1999. On clear days during winter dormancy, about half of the net radiation flux Rn was used to warm soil. During the revival stage, conductive heat flux G also used most of the incoming Rn, but the ratio of latent heat flux λE to Rn increased. During the stem‐extension stage, λE was about 50% of Rn; thereafter, λE/Rn increased continually, but G remained less than 10% of Rn. During the ripening stage, λE was almost 90% of Rn. Evaporative fraction (EF) can be expressed as a function of plant status and atmospheric boundary layer conditions. The relationship between EF and available energy under moderate air temperature and vapour pressure deficit conditions was examined for five combinations of aerodynamic and canopy conductance. Although the theoretical relationship indicates that EF should be highly correlated to soil water content, the correlation has been difficult to identify under field conditions. However, we observed that there exists a threshold value of Rn ? G, above which EF is less than 1·0, and that the threshold value is lower under soil‐water deficit conditions than under abundant soil‐water conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Snow water equivalent was measured during three springs on north‐ and south‐exposed sites representing a range of stand structure and development stages of Quebec's balsam fir forest. Maximum snow water equivalent of the season, mean seasonal snowmelt rate, snowmelt season duration and total snowmelt season degree‐day factor were related to canopy height, canopy density, light interception fraction and basal area of the stands using random coefficient models. Seasonal mean snowmelt rate was better explained by stand characteristics (R2 from 0·41 to 0·61) than was maximum snow water equivalent (R2 from 0·08 to 0·23). The best relationship was found with light interception, which explained 61% of snowmelt rate variability between stands. These relationships were not significantly affected by stand aspect (Pr ≥ S = 0·14 or higher), as snow dynamics seemed less dependent on aspect than on stand characteristics. Snowmelt recovery rates could be used by forest planners to establish an acceptable time step for the harvesting of different parts of a watershed in order to prevent peak flow augmentations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Direct measurements of winter water loss due to sublimation were made in a sub‐alpine forest in the Rocky Mountains of Colorado. Above‐and below‐canopy eddy covariance systems indicated substantial losses of winter‐season snow accumulation in the form of snowpack (0·41 mm d?1) and intercepted snow (0·71 mm d?1) sublimation. The partitioning between these over and under story components of water loss was highly dependent on atmospheric conditions and near‐surface conditions at and below the snow/atmosphere interface. High above‐canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow‐surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above‐canopy latent heat fluxes, high within‐canopy sublimation rates (maximum = 3·7 mm d?1), and diminished sub‐canopy snowpack sublimation. These results indicate that sublimation losses from the sub‐canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compels comprehensive studies of snow sublimation in forested regions that integrate sub‐canopy and over‐story processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A Note has been published for this article in Hydrological Processes 18(4) 2004, 825. Both water and heat balances were studied in a conifer plantation watershed in south‐west Japan, within the warm‐temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m?2 year?1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (λR). The mean annual evaporation of canopy‐intercepted water was 356 mm or about 15% of the average precipitation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The water and energy exchanges in forests form one of the most important hydro‐meteorological systems. There have been far fewer investigations of the water and heat exchange in high latitude forests than of those in warm, humid regions. There have been few observations of this system in Siberia for an entire growing season, including the snowmelt and leaf‐fall seasons. In this study, the characteristics of the energy and water budgets in an eastern Siberian larch forest were investigated from the snowmelt season to the leaf‐fall season. The latent heat flux was strongly affected by the transpiration activity of the larch trees and increased quickly as the larch stand began to foliate. The sensible heat dropped at that time, although the net all‐wave radiation increased. Consequently, the seasonal variation in the Bowen ratio was clearly ‘U’‐shaped, and the minimum value (1·0) occurred in June and July. The Bowen ratio was very high (10–25) in early spring, just before leaf opening. The canopy resistance for a big leaf model far exceeded the aerodynamic resistance and fluctuated over a much wider range. The canopy resistance was strongly restricted by the saturation deficit, and its minimum value was 100 s m?1 (10 mm s?1 in conductance). This minimum canopy resistance is higher than values obtained for forests in warm, humid regions, but is similar to those measured in other boreal conifer forests. It has been suggested that the senescence of leaves also affects the canopy resistance, which was higher in the leaf‐fall season than in the foliated season. The mean evapotranspiration rate from 21 April 1998 to 7 September 1998 was 1·16 mm day?1, and the maximum rate, 2·9 mm day?1, occurred at the beginning of July. For the growing season from 1 June to 31 August, this rate was 1·5 mm day?1. The total evapotranspiration from the forest (151 mm) exceeded the amount of precipitation (106 mm) and was equal to 73% of the total water input (211 mm), including the snow water equivalent. The understory evapotranspiration reached 35% of the total evapotranspiration, and the interception evaporation was 15% of the gross precipitation. The understory evapotranspiration was high and the interception evaporation was low because the canopy was sparse and the leaf area index was low. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
High‐resolution, spatially extensive climate grids can be useful in regional hydrologic applications. However, in regions where precipitation is dominated by snow, snowmelt models are often used to account for timing and magnitude of water delivery. We developed an empirical, nonlinear model to estimate 30‐year means of monthly snowpack and snowmelt throughout Oregon. Precipitation and temperature for the period 1971–2000, derived from 400‐m resolution PRISM data, and potential evapotranspiration (estimated from temperature and day length) drive the model. The model was calibrated using mean monthly data from 45 SNOTEL sites and accurately estimated snowpack at 25 validation sites: R2 = 0·76, Nash‐Sutcliffe Efficiency (NSE) = 0·80. Calibrating it with data from all 70 SNOTEL sites gave somewhat better results (R2 = 0·84, NSE = 0·85). We separately applied the model to SNOTEL stations located < 200 and ≥ 200 km from the Oregon coast, since they have different climatic conditions. The model performed equally well for both areas. We used the model to modify moisture surplus (precipitation minus potential evapotranspiration) to account for snowpack accumulation and snowmelt. The resulting values accurately reflect the shape and magnitude of runoff at a snow‐dominated basin, with low winter values and a June peak. Our findings suggest that the model is robust with respect to different climatic conditions, and that it can be used to estimate potential runoff in snow‐dominated basins. The model may allow high‐resolution, regional hydrologic comparisons to be made across basins that are differentially affected by snowpack, and may prove useful for investigating regional hydrologic response to climate change. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

12.
Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, an artificial neural network (ANN) model for reference evapotranspiration (ET0) calculation was investigated. ANNs were trained and tested for arid (west), semi‐arid (middle) and sub‐humid (east) areas of the Inner Mongolia district of China. Three or four climate factors, i.e. air temperature (T), relative humidity (RH), wind speed (U) and duration of sunshine (N) from 135 meteorological stations distributed throughout the study area, were used as the inputs of the ANNs. A comparison was conducted between the estimates provided by the ANNs and by multilinear regression (MLR). The results showed that ANNs using the climatic data successfully estimated ET0 and the ANNs simulated ET0 better than the MLRs. The ANNs with four inputs were more accurate than those with three inputs. The errors of the ANNs with four inputs were lower (with RMSE of 0·130 mm d?1, RE of 2·7% and R2 of 0·986) in the semi‐arid area than in the other two areas, but the errors of the ANNs with three inputs were lower in the sub‐humid area (with RMSE of 0·21 mm d?1, RE of 5·2% and R2 of 0·961. For the different seasons, the results indicated that the highest errors occurred in September and the lowest in April for the ANNs with four inputs. Similarly, the errors were higher in September for the ANNs with three inputs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A typical agricultural water reservoir (AWR) of 2400 m2 area and 5 m depth, located in a semi‐arid area (southern Spain), was surveyed on a daily basis for 1 year. The annual evaporation flux was 102·7 W m?2, equivalent to an evaporated water depth of 1310 mm year?1. The heat storage rate G exhibited a clear annual cycle with a peak gain in April (G ~ 45 W m?2) and a peak loss in November (G ~ 40 W m?2), leading to a marked annual hysteretic trend when evaporation (λE) was related to net radiation (Rn). λE was strongly correlated with the available energy A, representing 91% of the annual AWR energy loss. The sensible heat flux H accounted for the remaining 9%, leading to an annual Bowen ratio in the order of 0·10. The equilibrium and advective evaporation terms of the Penman formula represented 76 and 24%, respectively, of the total evaporation, corresponding to a annual value of the Priestley–Taylor (P–T) coefficient (α) of 1·32. The P–T coefficient presented a clear seasonal pattern, with a minimum of 1·23 (July) and a maximum of 1·65 (December), indicating that, during periods of limited available energy, AWR evaporation increased above the potential evaporation as a result of the advection process. Overall, the results stressed that accurate prediction of monthly evaporation by means of the P–T formula requires accounting for both the annual cycle of storage and the advective component. Some alternative approaches to estimating Rn, G and α are proposed and discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The Canadian Land Surface Scheme (CLASS) was modified to correct an underestimation of the winter albedo in evergreen needleleaf forests. Default values for the visible and near‐infrared albedo of a canopy with intercepted snow, αVIS,cs and αNIR,cs, respectively, were too small, and the fraction of the canopy covered with snow, fsnow, increased too slowly with interception, producing a damped albedo response. A new model for fsnow is based on zI*, the effective depth of newly intercepted snow required to increase the canopy albedo to its maximum, which corresponds in the model with fsnow = 1. Snow unloading rates were extracted from visual assessments of photographs and modelled based on relationships with meteorological variables, replacing the time‐based method employed in CLASS. These parameterizations were tested in CLASS version 3.6 at boreal black spruce and jack pine forests in Saskatchewan, Canada, a subalpine Norway spruce and silver fir forest at Alptal, Switzerland, and a boreal maritime forest at Hitsujigaoka, Japan. Model configurations were assessed based on the index of agreement, d, relating simulated and observed daily albedo. The new model employs αVIS,cs = 0.27, αNIR,cs = 0.38 and zI* = 3 cm. The best single‐variable snow unloading algorithm, determined by the average cross‐site d, was based on wind speed. Two model configurations employing ensemble averages of the unloading rate as a function of total incoming radiation and wind speed, and air temperature and wind speed, respectively, produced larger minimum cross‐site d values but a smaller average. The default configuration of CLASS 3.6 produced a cross‐site average d from October to April of 0.58. The best model employing a single parameter (wind speed at the canopy top) for modelling the unloading rate produced an average d of 0.86, while the two‐parameter ensemble‐average unloading models produced a minimum d of 0.81 and an average d of 0.84. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes published by John Wiley & Sons, Ltd.  相似文献   

15.
Tamarix elongata Ledeb is a desert shrub found in the desert region of Northwest China and is commonly cultivated as a sand‐holding plant in this region. To understand its water requirement and the effects of climate conditions on its growth, trunk xylem sap flows of irrigated 8‐year‐old Tamarix elongata Ledeb plants were monitored continuously with heat‐pulse sap flow meters for the entire season. Soil moisture contents at 0–300 cm layer depth were also measured with a tube type time domain reflectometry (Tube‐TDR). Meteorological factors, i.e. solar radiation, air temperature, relative humidity and wind speed were simultaneously monitored by an automatic weather station at the site. Daily and seasonal variations of the trunk sap fluxes and their correlations with the meteorological factors, reference evapotranspiration and soil moisture contents in the root‐zone were analysed. The results indicated that frost influenced the trunk sap flux greatly under irrigated conditions, although the flux generally fluctuated with the variation of environmental factors and showed a mean trunk sap flux of 4·18 l d?1. There was a significantly exponential relationship between sap flux and the reference value of crop evapotranspiration, with a correlation coefficient of R2 = 0·7172. The sap flux also had a significant correlation with the soil water contents at a depth of 150–300 cm from soil surface (R2 = 0·5014). The order of the main meteorological factors affecting the sap flux of Tamarix elongata Ledeb trees was solar radiation > air temperature > vapour pressure deficit > relative humidity > wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Field experiments were conducted to investigate the effects of leaf area index and soil moisture content on evapotranspiration and its components within an apple orchard in northwest China for 2 years. Evapotranspiration in the non‐rainfall period was estimated using two approaches: the soil water balance method based on tube‐type time‐domain reflection measurements, and sap flow plus micro‐lysimeter methods. The two methods were in good agreement, with differences usually less than 10%. The components of evapotranspiration varied with canopy development. During spring and autumn, soil evaporation was dominating as result of low leaf area index. In summer, plant transpiration became significant, with an average transpiration to evapotranspiration ratio of 0·87. The crop coefficient Kc showed a strong linear dependence on leaf area index. The water stress coefficient Ks was around 1·0 when soil moisture was above 23% and started to decrease linearly after that. This study demonstrates that prediction of evapotranspiration in apple orchards can be made using the Food and Agriculture Organization's crop coefficient method from commonly available meteorological data in the area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper two models are presented for calculating the hourly evapotranspiration λE (W m?2) using the Penman–Monteith equation. These models were tested on four irrigated crops (grass, soya bean, sweet sorghum and vineyard), with heights between 0·1 and 2·2 m at the adult growth stage. In the first model (Katerji N, Perrier A. 1983. Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne : rôle d'un coefficient cultural. Agronomie 3(6): 513–521, KP model), the canopy resistance rc is parameterized by a semi‐empirical approach. In the second model (Todorovic M. 1999. Single‐layer evapotranspiration model with variable canopy resistance. Journal of Irrigation and Drainage Engineering—ASCE 125: 235–245, TD model), the resistance rc is parameterized by a mechanistic model. These two approaches are critically analysed with respect to the underlying hypotheses and the limitations of their practical application. In the case of the KP model, the mean slope between measured and calculated values of λE was 1·01 ± 0·6 and the relative correlation coefficients r2 ranged between 0·8 and 0·93. The observed differences in slopes, between 0·96 and 1·07, were not associated with the crop height. This model seemed to be applicable to all the crops examined. In the case of the TD model, the observed slope between measured and calculated values of λE for the grass canopy was 0·79. For the other crops, it varied between 1·24 and 1·34. In all the situations examined, the values of r2 ranged between 0·73 and 0·92. The TD model underestimated λE in the case of grass and overestimated it in the cases of the other three crops. The under‐ or overestimation of λE in the TD model were due: (i) to some inaccuracies in the theory of this model, (ii) to not taking into account the effect of aerodynamic resistance ra in the canopy resistance modelling. Therefore, the values of rc were under‐ or overestimated in consequence of mismatching the crop height. The high value of air vapour pressure deficit also contributed to the overestimation of λE, mainly for the tallest crop. The results clarify aspects of the scientific controversy in the literature about the mechanistic and semi‐empirical approaches for estimating λE. From the practical point of view the results also present ways for identifying the most appropriate approach for the experimental situations encountered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Winter‐forest processes affect global and local climates. The interception‐sublimation fraction (F) of snowfall in forests is a substantial part of the winter water budget (up to 40%). Climate, weather‐forecast and hydrological modellers incorporate increasingly realistic surface schemes into their models, and algorithms describing snow accumulation and snow‐interception sublimation are now finding their way into these schemes. Spatially variable data for calibration and verification of wintertime dynamics therefore are needed for such modelling schemes. The value of F was determined from snow courses in open and forested areas in Hokkaido, Japan. The value of F was related to species and canopy‐structure measures such as closure, sky‐view fraction (SVF) and leaf‐area index (LAI). Forest structure was deduced from fish‐eye photographs. The value of F showed a strong linear correlation to structure: F = 0·44 ? 0·6 × SVF for SVF < 0·72 and F = 0 for SVF > 0·72, and F = 0·11 LAI. These relationships seemed valid for evergreen conifers, larch trees, alder, birch and mixed deciduous stands. Forest snow accumulation (SF) could be estimated from snowfall in open fields (So) and to LAI according to SF = So (1 ? 0·11 LAI) as well as from SVF according to SF = So (0·56 + 0·6 SVF) for SVF < 0·72. The value of SF was equal to So for SVF values above 0·72. The value of sky‐view fraction was correlated to the normalized difference snow index (NDSI) using a Landsat‐TM image for observation plots exceeding 1 ha. Variables F and SF were related to NDSI for these plots according to: F = ?0·37NDSI + 0·29 and SF = So (0·81 + 0·37NDSI). These relationships are somewhat hypothetical because plot‐size limitation only allowed one sparse‐forest observation of NDSI to be used. There is, therefore, a need to confirm these relationships with further studies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Radiative characteristics in a forested drainage basin during the snowmelt season were examined in order to better understand and predict snowmelt runoff in the basin. A method for estimating net radiation in a forest (Rnf) was presented using the total sky view factor (P) and the sun path sky view factor (Q). Solar radiation, albedo, atmospheric radiation and air temperature observed at an open site were also required. The total and the sun path sky view factors were determined from all‐sky photographs. Q was expressed as a linear function of P for 0·15<P<0·86 regardless of forest type. For P<0·15, Q was set to zero, and for P>0·86, Q was equal to unity. The short‐wave radiation budget at the forest floor (Snf) increased with P, whereas the long‐wave radiation budget (Lnf) decreased with P. Rnf increased with P for 0·15<P<0·86, and changed little with P for P<0·15 and P>0·86, as the increase in Snf was offset by the decrease in Lnf . The forest effect on Rnf was diminished under cloudy or high albedo conditions, because Snf was easily offset by Lnf . This estimation method was extended to the whole basin, and Rnf was obtained over a watershed covered by trees. At the beginning of the snowmelt season when the albedo remained high, the forest effect became null because the decrease in Snf was balanced by the increase in Lnf . As the albedo gradually lowered with the advance of the snowmelt season, the decrease in Snf owing to forest covers exceeded the increase in Lnf , and the forest effect to decrease Rnf became evident. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号