首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the inherent difficulty in directly recording the rotational ground motions, torsional ground motions have to be estimated from the recorded spatially varying translational motions. In this paper, an empirical coherency function, which is based on the recorded motions at the SMART-1 array, is suggested to model the spatial variation of translational motions. Then, the torsional ground motion power spectral density function is derived. It depends on the translational motion power spectral density function and the coherency function. Both the empirical coherency function and the torsional motion power spectral density function are verified by the recorded motions at the SMART-1 array. The response spectra of the torsional motions are also estimated. Discussion on the relations between the torsional motion response spectrum and the corresponding translational motion response spectrum is made. Numerical results presented can be used to estimate the torsional ground motion power spectral density function and response spectrum.  相似文献   

2.
Approximate formulas for rotational effects in earthquake engineering   总被引:1,自引:0,他引:1  
The paper addresses the issue of researching into the engineering characteristics of rotational strong ground motion components and rotational effects in structural response. In this regard, at first, the acceleration response spectra of rotational components are estimated in terms of translational ones. Next, new methods in order to consider the effects of rotational components in seismic design codes are presented by determining the effective structural parameters in the rotational loading of structures due only to the earthquake rotational components. Numerical results show that according to the frequency content of rotational components, the contribution of the rocking components to the seismic excitation of short period structures can never be ignored. During strong earthquakes, these rotational motions may lead to the unexpected overturning or local structural damages for the low-rise multi-story buildings located on soft soil. The arrangement of lateral-load resisting system in the plan, period, and aspect ratio of the system can severely change the seismic loading of wide symmetric buildings under the earthquake torsional component.  相似文献   

3.
To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.  相似文献   

4.
The seismic ground rotations are important with respect to spatial structural models, which are sensitive to the wave propagation. The rotational ground motion can lead to significant increasing of structural response, instability and unusual damages of buildings. Currently, the seismic analyses often take into account the rocking and torsion motions separately using artificial accelerograms. We present an exact analytical method, proposed by Nazarov [15] for computing of three rotational accelerograms simultaneously from given translational records. The method is based on spectral representation in the form of Fourier amplitude spectra of seismic waves, corresponding to the given three-component translational accelerogram. The composition, directions and properties of seismic waves are previously determined in the form of a generalized wave model of ground motion. It is supposed that seismic ground motion can be composed by superposition of P, SV, SH- and surface waves. As an example, the dynamic response analysis of 25-story building is presented. Here recorded (low-frequency) and artificial (high-frequency) accelerograms were used; each of them includes three translational and three rotational components. In this structural analysis, we have clarified primarily conditions under which rotational ground motion should be taken into account. Next, we have calculated three rotational components of seismic ground motion. Then they were taken as additional seismic loads components for further seismic analysis of the building. Note, soil–structure interaction (SSI) is not considered in this study. For computing, we use the special software for structural analyses and accelerogram processing (FEA Software STARK ES and Odyssey software, Eurosoft Co., Russia). It was developed and is used in engineering practice in the Central Research Institute of Building Constructions (TsNIISK, Moscow, Russia).  相似文献   

5.
Soil amplification characteristics are investigated using data from the Chibaken‐Toho‐Oki earthquake and its aftershocks recorded at Chiba dense array in Japan. The frequency‐dependent amplification function of soil is calculated using uphole‐to‐downhole spectral ratio analysis, considering the horizontal components of shear wave. The identified spectral ratios consistently demonstrate the splitting of peaks in their resonance frequencies and low amplification values in comparison with a 1D model. The torsional behaviour and horizontal ground motion coupling are clarified as the reasons for these phenomena at the site. To prove the hypothesis, the torsional motion is directly evaluated using the data of the horizontal dense array in different depths at the site. The comparison between Fourier spectra of torsional motion and identified transfer functions reveals the peaks at the same frequencies. The wave equation including torsion and horizontal motion coupling is introduced and solved for the layered media by applying wave propagation theory. Using the developed model, the effects of torsional motion with horizontal motion coupling on soil transfer function are numerically examined. Splitting and low amplification at resonance frequencies are confirmed by the results of numerical analysis. Furthermore, the ground motion in two horizontal directions at the site is simulated using site geotechnical specification and optimizing the model parameters. The simulated and recorded motions demonstrate good agreement that is used to validate the hypothesis. In addition, the spectral density of torsional ground motions are compared with the calculated one and found to be well predicted by the model. Finally, the results are used to explain the overestimation of damping in back‐calculation of dynamic soil properties using vertical array data in small strain level. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Simple procedures are proposed for computing response spectra for torsional and rocking input ground motions assuming horizontally travelling waves of constant shape. It is shown that harmonic relationships exist between the rotational spectra and the corresponding translational spectra, and that SV rather than PSV is the correct basis for deriving the angular displacement, velocity and acceleration response spectra. An approximation enabling the use of the standard tripartite logarithmic response spectra is discussed. Simple expressions for ‘accidental’ eccentricity and rocking input effects are presented. Also proposed are multipliers to spectral ordinates to account for the filtering effects of rigid base mats resting on Winkler type foundations. For wave transit times shorter than half the natural period of the structure, these multipliers can be approximated by the frequency dependent averaging coefficients given in the literature, which are dependent, however, on the response, rather than the input, frequency.  相似文献   

7.
At large hypocentral distances, it is convenient to approximate the curved transient seismic wavefronts as planar to estimate rotational ground motions from the single-station recordings of translational ground motions. In this paper, we investigate whether and when this approximation, referred to as the ‘plane-wave’ approximation, can be considered adequate close to the source. For this, we consider a simplistic source model comprising a two-dimensional, kinematic shear dislocation SH line-source buried in a homogenous, elastic half-space and assume this to be an equivalent representation of a finite-sized fault. The ‘plane-wave’ rotational motion is then synthesized from the exact translational motion solution to the assumed model and compared with the exact rotational motion solution for this model. The comparison between the two sets of rotational amplitudes in frequency domain suggests that the plane-wave approximation may be adequate, when the wavelengths of the seismic waves are much smaller than the source depth. When this is not true, the plane-wave approximation is seen to underestimate the Fourier amplitudes close to the source by several orders, particularly when the fault planes are vertically oriented. A similar comparison in the time domain indicates that a severe underestimation may also occur when the source rise time is longer than the shear-wave arrival time at the epicenter. Significant discrepancies are also observed between the waveforms of the exact and plane-wave rotational motions.  相似文献   

8.
The purpose of this paper is to present a stochastical approach, which analyse the torsional ground motion, induced by the spatial variability of seismic motions. For this purpose, a torsional ground motion analytical model is proposed and a normalised differential motion parameter is introduced. The approach regards the seismic motion as the combination of a travelling wave on the site (coherent component) and a zero mean randomizing factor that introduces a loss of correlation effect. The soil parameters as fundamental frequency and damping coefficient are integrating by modeling the coherent component with the commonly used Kanai-Tajimi power spectral density. The parametric analysis of the model shows an increase of the induced torsion with both the soil frequency and the motion scattering parameter, and a decrease with the separation distance, the apparent wave velocity and the correlation length. Finally, in order to test the proposed torsional ground motion model prediction, it is compared to the experimental results recorded by the EPRI LSST array in Lotung, Taiwan (Laouami and Labbé, 2002). The comparison leads to the identification of the model parameters for the Lotung soft site.  相似文献   

9.
Even though the rotational ground motion may contribute significantly to the response of certain structures, their effects are generally ignored in seismic design, because of non-availability of appropriate instruments for direct recording of the rotational components. Like many others, a simplified framework was proposed by the authors elsewhere (Rodda and Basu in Int J Earthq Impact Eng 1(3):253–288, 2016) to extract the rotational motion as a temporal derivative of an apparent translational component (ATC) followed by scaling with an apparent velocity. ATC was defined such that its time derivative is closely correlated with the respective rotational motion. But the a priori knowledge of rotational motion is required in estimating the ATC for rocking component. An empirical procedure has been proposed here to bypass the requirement of rotational motion a priori. This paper also assesses the definition of ATC through examining the similitude between the time derivative of ATC and the respective rotational motion (benchmark) quantitatively. Similitude is assessed on smoothened response spectra (by Hamming window) of the time derivative of ATC and that of rotational motion. A new definition of spectral contrast angle (SCA) based on distance correlation has been proposed to assess the spectral similitude. To differentiate the similar from non-similar spectra, SCA corresponding to an acceptable degree of similarity is proposed by studying a large ensemble of ground motions from the PEER database. This similitude study is further extended using relative energy build up and energy spectra.  相似文献   

10.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Linear and non-linear responses of a two-story structural model excited by near-source fault-normal pulse and fault-parallel displacement are investigated. For the considered linear system, the multi-component differential-motion effects amplify the first-story drifts 3.0–4.0 times relative to the excitation by synchronous horizontal ground motion only. The contribution of horizontal differential ground motion to the total drift is about two thirds, and the contribution of vertical and rocking differential ground motions is about one third. For the considered nonlinear system, the effects of vertical and rocking differential ground motions become more significant for the second-story drifts. The horizontal differential ground motion amplifies the first-story drifts, but the simultaneous action of horizontal, vertical, and rocking differential ground motions can amplify the first- and second-story drifts by more than 2.0 times relative to the drifts computed for uniform horizontal ground motion only.  相似文献   

12.
Spatial variation of acceleration response spectra is examined using strong motion records for a large number of events from dense accelerometer arrays at Chiba in Japan and SMART-1 in Lotung, Taiwan. The effects of earthquake component, structural damping, earthquake magnitude, focal depth, epicentral distance, structural time period, and station separation on the intra-event variation of response spectra are examined first through an empirical analysis and then through a least-square regression fit for parametric study. A very large scatter of the response spectra ratio is observed for both arrays, especially for SMART-1 array. The mean values of the ratio vary from 10 to 20 per cent for Chiba array while they vary from 25 to 50 per cent for SMART-1 array. The coefficients of variation of the ratio range from 5 to 25 per cent for Chiba array and 30 to 50 per cent for SMART-1 array. The correlation among response spectra is found to be inversely proportional to station separation and shows frequency dependence. For larger time periods, the correlation is lower and not higher. The correlation is also lower for UD earthquake component as compared to the two horizontal components. For higher damping ratio, the correlation among spectra is higher. The effect of the earthquake magnitude, focal depth and epicentral distance on the spatial variation is complex. The three parameters having implicit interdependence, considering their combined effect, a positive contribution to the value of ratio of response spectra is observed in the case of larger earthquake events. Furthermore, as mentioned above, the spatial variation for SMART-1 array is much larger than that for Chiba array. This difference can be attributed mainly to the difference in distance between the instruments in the two arrays. However, some of the difference is considered to be due to site specific characteristics. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
A computational scheme is presented to construct torsional spectra due to the rotational component of seismic ground motions. The rotational component of ground motion is estimated from the measured earthquake acceleration records. In contrast to previous studies, no differentiation of acceleration records is involved in the present scheme. The torsional spectrum of the 1940 El Centro earthquake is computed and compared with previous results. An average and a mean plus one standard deviation torsional spectrum is presented for design purposes. These spectra are results based on four historical records (1934 El Centre, 1940 El Centro, 1949 Olympia and 1952 Taft) normalized to the 1940 El Centro intensity.  相似文献   

14.
近断层竖向与水平向加速度反应谱比值特征   总被引:4,自引:2,他引:2       下载免费PDF全文
显著的竖向地震动是近断层地震动区别于远场地震动的重要特征之一,为更合理地确定竖向地震动作用,研究了近断层区域竖向地震动的反应谱特征及其与水平向反应谱比值的影响因素.首先,选取1952—1999年世界范围内震级在M5.4—7.6之间的18次地震的地震动记录,研究竖向地震加速度反应谱及其与水平向加速度反应谱比值特征;然后统计分析了断层距、场地条件、震级以及断层机制对竖向与水平向加速度反应谱比的影响.结果表明,一般情况下竖向加速度具有更丰富的短周期分量,并且竖向加速度反应谱衰减较慢;断层距在20km以内的近断层区域、软弱土层场地、中等震级地震和逆断层大震级中长周期范围等条件下,具有较大的竖向与水平向加速度反应谱比值;在近断层区域的结构抗震设计中应充分考虑竖向地震动的影响.  相似文献   

15.
Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the ‘right’ moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L’Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.  相似文献   

16.
In this paper, the method presented by Lee and Trifunac (1985) for generating synthetic torsional accelerograms has been extended to the estimation of synthetic rocking accelerograms and of their response spectra. Results from our previous regression analyses for the characterization of strong shaking in terms of (1) earthquake magnitude and epicentral distance, or (2) Modified Mercalli Intensity at the site are utilized here again. The effects of geologic environment, in terms of site parameters or the representative depth of sediments, which influence amplification, and the dispersive properties of ground motion are also included. The synthetic rocking accelerogram is then constructed from the horizontal and vertical acceleration components.  相似文献   

17.
By now, it is well known that long‐period surface waves can induce resonant response in high‐rise buildings, in particular those located in sedimentary basins. Rayleigh wave passage has been reported to induce rocking motion at the base of the buildings which can increase displacement demands significantly. However, the building behavior to base rocking has not been extensively studied because commercially available instruments do not record rotational components of ground motion, and thus, rocking time histories have not been available to the analysts. In a recent study, we proposed an effective method for estimating the rocking associated with Rayleigh waves, which takes into account their frequency‐dependent phase velocities. In the present work, we select a number of recorded seismic motions which include surface waves on sedimentary basins from recent well‐recorded earthquake events. Then, we proceed to identify and extract the recorded surface waves by using the technique mentioned above. Using realistic soil‐structure analytical models that have been proposed in the published literature for high‐rise buildings, we study their response to Rayleigh waves as they respond to both translational and rocking motions. Of particular interest is to compare the response of such structures with and without the presence of rotational motions due to surface waves. Using the roof displacement and the building interstory drift as response quantities, our results indicate that demands are controlled by rotational (rocking) motions associated with Rayleigh waves.  相似文献   

18.
The purpose of this study was to perform an experimental analysis of the amplitude of full‐scale spatial variability of seismic motions with regard to earthquake engineering. The LSST‐Lotung array in Taiwan provides a good set of records for this type of study. Of interest are the free‐field torsional seismic components induced by the spatial variability of seismic motions. In this study, three events have been considered: LSST‐06, LSST‐07 and LSST‐16. In time domain analysis, the experimental results obtained show that when the separation distance increases, the induced torsion decreases, and the normalized differential motion parameter increases. Also, the results show that the stronger the event, in terms of maximum PGA, the larger the induced torsional amplitude and the smaller the induced normalized differential motion parameter. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
地震地面运动的转动随机模型   总被引:2,自引:0,他引:2  
李宏男  王苏岩 《地震研究》1992,15(3):334-343
In this paper, the characteristics of rotational power spectra in different sites are analyzed according to the relationship between the rotations and translations of ground motion from the elastic wave theory, and then the unified mathematical model of the spectra (including the torsion and rocking) is presented. Through the use of a lot of earthquake records and curve-fitting of the least square method, the statistical results of rotational power spectral parameters in defferent sites are given.  相似文献   

20.
In order to use rocking as a seismic response modification strategy along both directions of seismic excitation, a three‐dimensional (3D) rocking model should be developed. Since stepping or rolling rocking structural members out of their initial position is not a desirable performance, a rocking design should not involve these modes of motion. To this end, a model that takes the aforementioned constraint into account needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when damping is included), making it the simplest 3D extension of Housner's classical two‐dimensional (2D) rocking model. The development of models with and without damping is presented first. They are simple enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling seismic response. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号