首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
Background aqueous chemistry and 15Nnitrate tracer injection methods were used to calculate in‐stream nitrate uptake metrics at Red Canyon Creek, a third‐order stream in the Rocky Mountains in the state of Wyoming, United States. ‘Net’ nitrate uptake lengths, which reflect both nitrate uptake and regeneration, and ‘gross’ nitrate uptake lengths, which exclude re‐mineralization, were quantified separately from background nitrate chemistry and 15N labelling tracer data, respectively. Gross nitrate uptake lengths, from tracer injections of 15N labelled nitrate, ranged from 502 to 3140 m. Net nitrate uptake lengths, from background nitrate chemistry downstream of a point source, ranged from 1170 to 4330 m. Diurnal changes in uptake lengths suggest the importance of nitrate utilization by autotrophs in the stream and benthic zone. The differences between net and gross nitrate uptake lengths along lower reaches of Red Canyon Creek allowed us to estimate the nitrate regeneration rate, which was 0·056–0·080 µmol m?2 s?1 during the day and 0·0062–0·0083 µmol m?2 s?1 at night. Spatial patterns of streambed pore water chemistry indicate those areas of the hyporheic zone where denitrification was likely occurring. Permanent log dams generated stronger redox gradients in the hyporheic zone than areas with transient beaver dams. By combining isotopically labelled nitrate additions, estimates of uptake from background aqueous nitrate chemistry and characterization of redox conditions in the hyporheic zone, we were able to determine the nitrate regeneration rate and the redox processes responsible for nitrogen cycling in the hyporheic zone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Changes in the physical structure of urban streams can occur abruptly due to flashy high‐flow events and subsequently alter stream processes, including transient storage and nitrate uptake. We examined temporal variability in transient storage and nitrate uptake by exploring the effects of altered physical characteristics resulting from a single high‐flow event in three reaches of Spring Creek, an urban stream in Fort Collins, Colorado, USA. Study reaches of varying geomorphic and hydraulic characteristics were chosen to represent distinct geomorphic settings in terms of substrate size, sinuosity, bed slope, and degree of rehabilitation and structural controls. We performed detailed physical characterizations and multiple nutrient injections of Br? and NO3? to estimate transient storage and nitrate uptake in each reach. A comparison of pre‐flood and post‐flood data indicates that transient storage and nitrate uptake are highly context specific and mediated by interactions between geomorphic setting and flood discharge. In the two reaches that showed significant post‐flood increases in transient storage (250% to 350% increases in Fmed200), the pool‐riffle reach exhibited a significant increase in uptake velocity, while the channelized reach did not. In contrast, transient storage decreased post‐flood in the third reach containing hydraulic structures. These complex responses likely reflect reach‐specific differences in hyporheic versus in‐channel storage. This study shows that repeat injections are necessary to describe nutrient dynamics because transient storage and nitrate uptake can be highly variable over time (showing changes on the order of 100%) due to variation in discharge and geomorphically influential flow events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi‐arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface. Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi‐arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS‐P, a one‐dimensional, surface‐water, solute‐transport model from which we extracted the storage exchange rate α and cross‐sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short‐term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non‐gaining reach, stream water was diverted to the subsurface by debris dams and captured by large‐scale near‐stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Stream‐tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach‐integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS‐P. Transient storage modelling results were compared with direct observations to evaluate the reliability of the TSM. Results from the tracer injection in the bedrock reach supported the assumption that most transient storage in headwater mountain streams results from hyporheic exchange. Direct observations from the well networks in colluvial reaches showed that subsurface flow paths tended to parallel the valley axis. Cross‐valley gradients were weak except near steps, where vertical and cross‐valley hydraulic gradients indicated a strong potential for stream water to downwell into the hyporheic zone. The TSM parameters showed that both size and residence time of transient storage were greater in reaches with a few large log‐jam‐formed steps than in reaches with more frequent, but smaller steps. Direct observations showed that residence times in the unconstrained stream were longer than in the constrained stream and that little change occurred in the location and extent of the hyporheic zone between low‐ and high‐baseflow discharges in any of the colluvial reaches. The transient storage modelling results did not agree with these observations, suggesting that the TSM was insensitive to long residence‐time exchange flows and was very sensitive to changes in discharge. Disagreements between direct observations and the transient storage modelling results highlight fundamental problems with the TSM that confound comparisons between the transient storage modelling results for tracer injections conducted under differing flow conditions. Overall, the results showed that hyporheic exchange was little affected by stream discharge (at least over the range of baseflow discharges examined in this study). The results did show that channel morphology controlled development of the hyporheic zone in these steep mountain stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross‐section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near‐stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time‐scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream‐water exchange between the streams and extended hyporheic zones over long time‐scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11‰ D and 2·2‰ 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occurred owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time‐scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (α) generally an order magnitude lower (10?5 s?1) than those determined using stream‐tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near‐stream zones of rapid stream‐water exchange, where ‘fast’ biogeochemical reactions may influence water chemistry, and extended hyporheic zones, in which slower biogeochemical reaction rates may affect stream‐water chemistry at longer time‐scales. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A characterization of hyporheic exchange for dry and wet season baseflow, as well as partially dewatered discharge, was done in Prieta Creek, a first‐order cascade in northern Honduras. The cascade had discharges from 1 to 15 l s?1, had average slopes of 12%, pool spacing of 3 m, and shallow substrate of sand and gravel. Tracer tests were conducted in a 15‐m sub‐reach, a length considered to be adequate for the experiment based on the DaI test, a ratio of exchange and transport processes. In the three tests, between 9 and 18% of tracer was not recovered, possibly due to entrainment in flowpaths passing beneath the downstream monitoring location. Tracer data were analysed by the one‐dimensional transport with inflow and storage (OTIS) transient storage model (TSM) to derive standard exchange parameters, and by the solute transport in rivers (STIR) model to examine hyporheic residence time distributions (RTDs). The best fit of the observed tracer breakthrough curves was obtained by using the STIR model with a combination of two exponential RTDs to represent hyporheic retention. With increasing discharge, the OTIS model predicted increasing storage exchange fluxes and exchange coefficients and decreasing storage zone areas and transient storage times, which are trends supported by riparian and streambed piezometric head data. Riparian water levels rose during the transition from the dry to wet season, which could constrict the hyporheic storage zone. Thirteen of the 19 streambed piezometers recorded seasonal changes in hydraulic gradients and flux direction, with fewer yet stronger upwelling zones during higher discharges. The MODFLOW model missed the observed seasonal changes, possibly due to subtle changes in the seasonal change in water surface profiles. We conclude that partially dewatered dry season exchange, compared to wet season exchange, was initiated and terminated with smaller pressure gradients and, in different streambed locations, was smaller in volume, had longer residence times, and may connect with deeper and longer flow paths. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

9.
Time‐lapse geophysical surveys can map lingering hyporheic storage by detecting changes in response to saline tracer. Tracer tests were conducted in Crabby Creek, an urban stream outside Philadelphia, to examine the influence of stream restoration structures and variable sediment thickness. We compared electrical resistivity surveys with extensive well sampling (57 wells) in two 13.5‐m‐long reaches, each with a step drop created by a J‐hook. The two step drops varied in tracer behaviour, based on both the well data and the geophysical data. The well data showed more variation in arrival time where the streambed sediment was thick and was more uniform where sediment was thin. The resistivity in the reach with thin sediment showed lingering tracer in the hyporheic zone both upstream and downstream from the J‐hook. In the second reach where the sediment was thicker, the lingering tracer in the hyporheic zone was more extensive downstream from the J‐hook. The contrasting results between the two reaches from both methods suggested that sediments influenced hyporheic exchange more than the step at this location. Resistivity inversion differed from well data in both reaches in that it showed evidence for tracer after well samples had returned to background, mapping lingering tracer either upstream or downstream of a step. We conclude that resistivity surveys may become an important tool for hyporheic zone characterization because they provide information on the extent of slow moving fluids in the hyporheic zone, which have the potential to enhance chemical reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Trevor Klein  Laura Toran 《水文研究》2016,30(17):2948-2957
The hydrologic and biogeochemical processes that control nutrient export in urban streams are not well understood. Attenuation can occur by tributary dilution, groundwater discharge, and biological processing both in the water column and the hyporheic zone. A wastewater treatment plant on Pennypack Creek, an urban stream near Philadelphia, PA, provided high nitrate concentrations for analysis of downstream attenuation processes. Longitudinal sampling for an 8‐km reach revealed decreases in nitrate concentration of 2 mg l?1 at high flow and 4.5 mg l?1 during low flow. During high flow, δ15N‐NO3 increased from 9.5 to 10.5‰ and during low flow increased from 10.1 to 11.1‰. Two reaches were sampled at fine spatial intervals (approximately 200 m) to better identify attenuation processes. Mixing analysis indicated that groundwater discharge and biological processing both control nitrate concentration and isotope signatures. However, fine‐scaled sampling did not reveal spatially discrete zones; instead, these processes were occurring simultaneously. While both processes attenuate nitrate, they have opposite isotope signatures, which may have muted changes in δ15N‐NO3. At high flow, a decrease in Cl/NO3 ratios helped distinguish groundwater discharge occurring along both finely sampled reaches. At low flow, biological processing seemed to be occurring more extensively, but the δ15N‐NO3 signature was not consistent with either a single process or a sequential combination of groundwater dilution and biological nitrate attenuation. The collocation of processes makes it more difficult to assess biological processing hot spots and predict how urbanization and subsequent stream restoration influence nitrate attenuation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Although there has been recent focus on understanding spatial variability in hyporheic zone geochemistry across different morphological units under baseflow conditions, less attention has been paid to temporal responses of hyporheic zone geochemistry to non‐steady‐state conditions. We documented spatial and temporal variability of hyporheic zone geochemistry in response to a large‐scale storm event, Tropical Storm Irene (August 2011), across a pool–riffle–pool sequence along Chittenango Creek in Chittenango, NY, USA. We sampled stream water as well as pore water at 15 cm depth in the streambed at 14 locations across a 30 m reach. Sampling occurred seven times at daily intervals: once during baseflow conditions, once during the rising limb of the storm hydrograph, and five times during the receding limb. Principal component analysis was used to interpret temporal and spatial changes and dominant drivers in stream and pore water geochemistry (n = 111). Results show the majority of spatial variance in hyporheic geochemistry (62%) is driven by differential mixing of stream and ground water in the hyporheic zone. The second largest driver (17%) of hyporheic geochemistry was temporal dilution and enrichment of infiltrating stream water during the storm. Hyporheic sites minimally influenced by discharging groundwater (‘connected’ sites) showed temporal changes in water chemistry in response to the storm event. Connected sites within and upstream of the riffle reflected stream geochemistry throughout the storm, whereas downstream sites showed temporally lagged responses in some conservative and biogeochemically reactive solutes. This suggests temporal changes in hyporheic geochemistry at these locations reflect a combination of changes in infiltrating stream chemistry and hyporheic flowpath length and residence time. The portion of the study area strongly influenced by groundwater discharge increased in size throughout the storm, producing elevated Ca2+ and concentrations in the streambed, suggesting zones of localized groundwater inputs expand in response to storms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Investigations of phosphorus cycling and transport in streams lend insight into potential mechanisms of nutrient sequestration and can help mitigate human impacts. In this study, we examined the relationship between transient storage and phosphorus uptake in a cold‐water stream in western Wisconsin. Hydrological characteristics, nutrient spiralling metrics, macrophyte biomass, and geomorphological properties were quantified in 7 reaches of Spring Coulee Creek using injections of a conservative tracer alone or with added PO43?. Fraction of median travel time due to transient storage (Fmed200) was correlated with macrophyte biomass (r = .794, p = .033), and PO43? uptake velocity was correlated with Fmed200 (r = .756, p = .049). Stepwise linear regression was used to build models for transient storage and uptake velocity. Macrophyte biomass, stream bed slope, and riffle to pool ratio accounted for 99.6% of the variation in transient storage (p < .001). Transient storage, canopy cover, and slope accounted for 98.0% of the variation in uptake velocity (p = .002). This study shows that transient storage, primarily resulting from macrophyte beds, can be a significant factor regulating phosphorus uptake in stream ecosystems.  相似文献   

13.
Groundwaters feeding travertine‐depositing rivers of the northeastern segment of the Barkly karst (NW Queensland, Australia) are of comparable chemical composition, allowing a detailed investigation of how the rate of downstream chemical evolution varies from river to river. The discharge, pH, temperature, conductivity and major‐ion concentrations of five rivers were determined by standard field and laboratory techniques. The results show that each river experiences similar patterns of downstream chemical evolution, with CO2 outgassing driving the waters to high levels of calcite supersaturation, which in turn leads to widespread calcium carbonate deposition. However, the rate at which the waters evolve, measured as the loss of CaCO3 per kilometre, varies from river to river, and depends primarily upon discharge at the time of sampling and stream gradient. For example, Louie Creek (Q = 0·11 m3 s?1) and Carl Creek (Q = 0·50 m3 s?1) have identical stream gradients, but the loss of CaCO3 per kilometre for Louie Creek is twice that of Carl Creek. The Gregory River (Q = 3·07 m3 s?1), O'Shanassy River (Q = 0·57 m3 s?1) and Lawn Hill Creek (Q = 0·72 m3 s?1) have very similar gradients, but the rate of hydrochemical evolution of the Gregory River is significantly less than either of the other two systems. The results have major implications for travertine deposition: the stream reach required for waters to evolve to critical levels of calcite supersaturation will, all others things being equal, increase with increasing discharge, and the length of reach over which travertine is deposited will also increase with increasing discharge. This implies that fossil travertine deposits preserved well downstream of modern deposition limits are likely to have been formed under higher discharge regimes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we describe the importance of hyporheic dynamics within Andersen Creek and Von Guerard Stream, Taylor Valley, Antarctica, from the 2010–2011 melt season using natural tracers. Water collection started at flow onset and continued, with weekly hyporheic‐zone sampling. The water δ18O and δD values were isotopically lighter in the beginning and heavier later in the season. D‐excess measurements were used as an indicator of mixing because an evaporative signature was evident and distinguishable between 2 primary end‐members (glacier meltwater and hyporheic zone). Hyporheic‐zone influence on the channel water was variable with a strong control on streamwater chemistry, except at highest discharges. This work supports previous research indicating that Von Guerard Stream has a large, widespread hyporheic zone that varies in size with time and discharge. Andersen Creek, with a smaller hyporheic zone, displayed hyporheic‐zone solute interaction through the influence from subsurface hypersaline flow. Overall, the evolution of Taylor Valley hyporheic‐zone hydrology is described seasonally. In mid‐December, the hyporheic zone is a dynamic system exchanging with the glacier meltwater in the channel, and with diminishing flow in January, the hyporheic zone drains back into the channel flow also impacting stream chemistry. This work adds new information on the role of hyporheic zone–stream interaction in these glacier meltwater streams.  相似文献   

15.
Various physical and biological properties affect solute transport patterns in streams. We measured hydraulic characteristics of Payne Creek, a low‐gradient upper Coastal Plain stream, using tracer experiments and parameter estimation with OTIS‐P (one‐dimensional transport with inflow and storage with parameter optimization). The primary objective of this study was to estimate the effects of varying discharge, season, and litter accumulation on hydraulic parameters. Channel area A ranged from 0·081 to 0·371 m2 and transient storage area As ranged from 0·027 to 0·111 m2. Dispersion D ranged from 1·5 to 11·1 m2 min−1 and exchange coefficient α ranged from 0·009 to 0·038 min−1. Channel area and dispersion were positively correlated to discharge Q, whereas storage area and exchange coefficient were not. Relative storage size As/A ranged from 0·17 to 0·59, and was higher during fall than other seasons under a similar Q. The fraction of median travel time due to transient storage ranged from 8·8 to 34·5% and was significantly correlated with Q through a negative power function. Both metrics indicated that transient storage was a significant component affecting solute transport in Payne Creek, especially during the fall. Comparison between the measured channel area Ac and A suggested that surface storage was dominant in Payne Creek. During fall, accumulation of leaf litter resulted in larger A and As and lower velocity and D than during other seasons with similar discharge. Seasonal changes in discharge and organic matter accumulation, and dynamic channel morphology affected the magnitude of transient storage and overall hydraulic characteristics of Payne Creek. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The acidic discharge from Cement Creek, containing elevated concentrations of dissolved metals and sulphate, mixed with the circumneutral‐pH Animas River over a several hundred metre reach (mixing zone) near Silverton, CO, during this study. Differences in concentrations of Ca, Mg, Si, Sr, and SO42? between the creek and the river were sufficiently large for these analytes to be used as natural tracers in the mixing zone. In addition, a sodium chloride (NaCl) tracer was injected into Cement Creek, which provided a Cl? ‘reference’ tracer in the mixing zone. Conservative transport of the dissolved metals and sulphate through the mixing zone was verified by mass balances and by linear mixing plots relative to the injected reference tracer. At each of seven sites in the mixing zone, five samples were collected at evenly spaced increments of the observed across‐channel gradients, as determined by specific conductance. This created sets of samples that adequately covered the ranges of mixtures (mixing ratios, in terms of the fraction of Animas River water, %AR). Concentratis measured in each mixing zone sample and in the upstream Animas River and Cement Creek were used to compute %AR for the reference and natural tracers. Values of %AR from natural tracers generally showed good agreement with values from the reference tracer, but variability in discharge and end‐member concentrations and analytical errors contributed to unexpected outlier values for both injected and natural tracers. The median value (MV) %AR (calculated from all of the tracers) reduced scatter in the mixing plots for the dissolved metals, indicating that the MV estimate reduced the effects of various potential errors that could affect any tracer. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Traditional characterization of hyporheic processes relies upon modelling observed in‐stream and subsurface breakthrough curves to estimate hyporheic zone size and infer exchange rates. Solute data integrate upstream behaviour and lack spatial coverage, limiting our ability to accurately quantify spatially heterogeneous exchange dynamics. Here, we demonstrate the application of near‐surface electrical resistivity imaging (ERI) methods, coupled with experiments using an electrically conductive stream tracer (dissolved NaCl), to provide in situ imaging of spatial and temporal dynamics of hyporheic exchange. Tracer‐labelled water in the stream enters the hyporheic zone, reducing electrical resistivity in the subsurface (to which subsurface ERI is sensitive). Comparison of background measurements with those recording tracer presence provides distributed characterization of hyporheic area (in this application, ∼0·5 m2). Results demonstrate the first application of ERI for two‐dimensional imaging of stream‐aquifer exchange and hyporheic extent. Future application of this technique will greatly enhance our ability to quantify processes controlling solute transport and fate in hyporheic zones, and provide data necessary to inform more complete numerical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The goal of this research was to compare hyporheic activity in recently restored and adjacent un‐restored reaches of the Truckee River downstream from the Reno/Sparks metropolitan area. The installation of rocky riffles and raised channel bed elevations in the restored reaches may have increased the degree of surface–subsurface interaction. A fluctuating chloride concentration signal served as the tracer, induced by the variable influx of higher salinity water several miles upstream from the study reach. The solute transport model, OTIS, was used in conjunction with the hydrodynamic model, DYNHYD5, to estimate transient storage parameters under unsteady flow conditions. The model was calibrated to chloride concentrations measured over a period of three days at six in‐stream locations representing restored and un‐restored reaches. An automated parameter estimation algorithm (SCE‐UA) was used to optimize parameters for multiple reaches simultaneously and generate a distribution of parameter estimates. Results suggest that the transient storage zone cross‐sectional area (As) is larger in the restored reaches than in the unrestored reaches, but the exchange coefficient (α) is smaller, leading to increased hyporheic residence time and hydrologic retention in the vicinity of channel reconstructions. Scenarios were used to simulate the potential effects of increased subsurface residence time on denitrification and in‐stream NO3‐N concentrations. Monte Carlo analysis was performed to assess uncertainty in the simulation results and show the potential for greater nutrient retention in the lower Truckee River as a result of channel restoration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The retention capacity for biologically available nitrogen within streams can be influenced by dynamic hyporheic zone exchange, a process that may act as either a net source or net sink of dissolved nitrogen. Over 5 weeks, nine vertical profiles of streambed chemistry (NO3? and NH4+) were collected above two beaver dams along with continuous high‐resolution vertical hyporheic flux data. The results indicate a non‐linear relation of net NO3? production followed by net uptake in the hyporheic zone as a function of residence time. This Lagrangian‐based relation is consistent through time and across varied morphology (bars, pools, glides) above the dams, even though biogeochemical and environmental factors varied. The empirical continuum between net NO3? production and uptake and residence time is useful for identifying two crucial residence time thresholds: the transition to anaerobic respiration, which corresponds to the time of peak net nitrate production, and the net sink threshold, which is defined by a net uptake in NO3? relative to streamwater. Short‐term hyporheic residence time variability at specific locations creates hot moments of net production and uptake, enhancing NO3? production as residence times approach the anaerobic threshold, and changing zones of net NO3? production to uptake as residence times increase past the net sink threshold. The anaerobic and net sink thresholds for beaver‐influenced streambed morphology occur at much shorter residence times (1.3 h and 2.3 h, respectively) compared to other documented hyporheic systems, and the net sink threshold compares favorably to the lower boundary of the anaerobic threshold determined for this system with the new oxygen Damkohler number. The consistency of the residence time threshold values of NO3? cycling in this study, despite environmental variability and disparate morphology, indicates that NO3? hot moment dynamics are primarily driven by changes in physical hydrology and associated residence times. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994–1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with samples collected from instream, hyporheic, and parafluvial locations. Tracer data was used as input for a computer model to estimate hydrologic characteristics of each study reach. While solute concentrations during the tracer additions indicated that steady-state or “plateau” conditions had been reached, interstitial samples indicated that there were additional hyporheic and parafluvial zones that had not been fully labeled at the time of apparent steady state in the stream channel (plateau). Exchange between channel and hyporheic water was a function of location within a pool–riffle sequence, with rapid downwelling at the head of riffles and delayed upwelling in riffle tails. The extent of exchange between channel and hyporheic water was positively correlated with apparent streambed hydraulic conductivity. Tracer additions indicated interstitial velocities ranging from 0.030 to 0.075 cm s−1 and hydraulic conductivities from 2.4 to 12.2 cm s−1. Hyporheic and in-channel samples were collected for N, P, DO, and CO2 analyses in conjunction with conservative tracer additions in four of the stream reaches for which the interstitial velocities were also determined. Transformation rates based on these data indicated that there was rapid nitrification of mineralized organic N and production of ammonium, phosphate, and carbon dioxide in the interstitial zones of all four reaches. Dissolved oxygen did not appear to be limiting in the reaches studied. The hyporheic zone of all four reaches was a source of nitrate, carbon dioxide, and ammonium to the channel water based on the average concentration of upwelling waters. Increased contact time with hyporheic and parafluvial zones was related to decreased temperature and increased conductivity. Net nitrogen flux from the hyporheic zone was equivalent to 14–162% of benthic N uptake requirements for the Kuparuk River. These observations are important because we expected that the presence of continuous permafrost in this Arctic environment would limit the importance of hyporheic processes, either physically (i.e., through the presence of a restricting thaw bulb in the permafrost) or biogeochemically (i.e., through low temperatures). Instead, we found that biogeochemical processes in the hyporheic zone of these Arctic streams are at least as important as it is in similar temperate stream ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号