首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
We studied the relationships between streamwater chemistry and the topography of subcatchments in the Dorokawa watershed in Hokkaido Island, northern Japan, to examine the use of topography as a predictor of streamwater chemistry in a watershed with relatively moderate terrain compared with other regions of Japan. Topographic characteristics of the Dorokawa watershed and its subcatchments were expressed as topographic index (TI) values, which ranged from 4·5 to 20·4 for individual grid cells (50 × 50 m2), but averaged from 6·4 to 7·4 for the 20 subcatchments. Streamwater samples for chemical analyses were collected four times between June and October 2002 from 20 locations in the watershed. The pH of water that passed through the watershed increased from ~5·0 to 7·0, with major increases in Na+ and Ca2+ and marked decreases in NO3? and SO . Distinctive spatial patterns were observed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and NO3? concentrations of streamwater across the watershed. Statistical analyses indicated significant linear relationships between the average TI values of subcatchments and DOC, DON, and NO3? concentrations. Furthermore, the proportion of DOC in streamwaters in the wet season increased with TI values relative to other nitrogen species, whereas NO3? concentrations decreased with TI. The gradients of soil wetness and the presence of wetlands explained many of the observed spatial and temporal patterns of DOC, DON, and NO3? concentrations in the surface waters of the Dorokawa watershed. Our results suggest that the TI is especially useful for predicting the spatial distribution of DOC, DON and NO3? in the surface waters of Hokkaido, where topographical relief is moderate and wetlands more common than in other regions of Japan. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This study analysed the importance of precipitation events from May 2003 to April 2004 on surface water chemistry and solute export from a 696 ha glaciated forested watershed in western New York State, USA. The specific objectives of the study were to determine: (a) the temporal patterns of solutes within individual storm events; (b) the impact of precipitation events on seasonal and annual export budgets; and (c) how solute concentrations and loads varied for precipitation events among seasons as functions of storm intensity and antecedent moisture conditions. Analysis of solute trajectories showed that NH4+, total Al and dissolved organic nitrogen (DON) peaked on the hydrograph rising limb, whereas dissolved organic carbon (DOC) concentrations peaked following the discharge peak. Sulphate and base‐cations displayed a dilution pattern with a minimum around peak discharge. End‐member mixing analysis showed that throughfall contributions were highest on the rising limb, whereas valley‐bottom riparian waters peaked following the discharge peak. The trajectories of NO3? concentrations varied with season, indicating the influence of biotic processes on the generation, and hence flux, of this solute. Storm events had the greatest impact on the annual budgets for NH4+, K+, total dissolved Al, DON and DOC. Storm events during summer had the greatest impact on seasonal solute budgets. Summer events had the highest hourly discharges and high concentrations of solutes. However, NO3? and DOC exports during a spring snowmelt event were considerably more than those observed for large events during other periods of the year. Comparisons among storms showed that season, precipitation amount, and antecedent moisture conditions affected solute concentrations and loads. Concentrations of solutes were elevated for storms that occurred after dry antecedent conditions. Seven of the largest storms accounted for only 15% of the annual discharge, but were responsible for 34%, 19%, 64%, 13%, 39% and 24% of the annual exports of NH4+, K+, Al, NO3?, DON and DOC respectively. These results suggest that the intense and infrequent storms predicted for future climate‐change scenarios will likely increase the exports of solutes like DOC, DON, NH4+, Al and K+ from watersheds. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Extreme floods often follow wildfire in mountainous watersheds. However, a quantitative relation between the runoff response and burn severity at the watershed scale has not been established. Runoff response was measured as the runoff coefficient C, which is equal to the peak discharge per unit drainage area divided by the average maximum 30 min rainfall intensity during each rain storm. The magnitude of the burn severity was expressed as the change in the normalized burn ratio. A new burn severity variable, hydraulic functional connectivity Φ was developed and incorporates both the magnitude of the burn severity and the spatial sequence of the burn severity along hillslope flow paths. The runoff response and the burn severity were measured in seven subwatersheds (0·24 to 0·85 km2) in the upper part of Rendija Canyon burned by the 2000 Cerro Grande Fire near Los Alamos, New Mexico, USA. A rainfall–discharge relation was determined for four of the subwatersheds with nearly the same burn severity. The peak discharge per unit drainage area was a linear function of the maximum 30 min rainfall intensity I30. This function predicted a rainfall intensity threshold of 8·5 mm h?1 below which no runoff was generated. The runoff coefficient was a linear function of the mean hydraulic functional connectivity of the subwatersheds. Moreover, the variability of the mean hydraulic functional connectivity was related to the variability of the mean runoff coefficient, and this relation provides physical insight into why the runoff response from the same subwatershed can vary for different rainstorms with the same rainfall intensity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Nitrogen (N) and phosphorus (P) dynamics in the Kuparuk River in arctic Alaska were characterized in a 3‐year study using routine samples near the mouth of the river at the Arctic Ocean, synoptic whole‐river surveys, and temporally intense sampling during storms in three headwater basins. The Lower Kuparuk River has low nitrate concentrations (mean [NO3]‐N] = 17 µg l?1 ± 1·6 SE) and dissolved inorganic N (DIN, mean [N] = 31 µg l?1 ± 1·2 SE) compared with rivers in more temperate environments. Organic forms constituted on average 90% of the N exported to the Arctic Ocean, and high ratios of dissolved organic N (DON) to total dissolved N (TDN) concentrations (mean 0·92) likely result from waterlogged soils formed by reduced infiltration due to permafrost and low hydrologic gradients. Annual export of TDN, DON, and particulate N averaged 52 kg km?2, 48 kg km?2, and 4·1 kg km?2 respectively. During snowmelt, the high volume of runoff typically results in the highest nutrient loads of the year, although high discharge during summer storms can result in substantial nutrient loading over short periods of time. Differences in seasonal flow regime (snowmelt versus rain) and storm‐driven variation in discharge appear to be more important for determining nutrient concentrations than is the spatial variation in processes along the transect from headwaters towards the ocean. Both the temporal variation in nitrate:DIN ratios of headwater streams and the spatial variation in nitrate:DIN between larger sub‐basins and smaller headwater catchments is likely controlled by shifts in nitrification and soil anoxia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This 2‐year study (2000, 2001) reports annual nutrient (phosphorus, nitrate) export from a first‐order agricultural watershed in southern Ontario based on an intensive monitoring programme. The importance of storm and melt events in annual export estimates is demonstrated and the temporal variability in nutrient loading during events is related to processes occurring within the catchment. The feasibility of predicting event‐related nutrient export from hydrometric data is explored. The importance of sampling frequency throughout events is also shown. Export of total phosphorus (TP), soluble reactive phosphorus (SRP) and nitrate ( ) for 2000 and 2001 averaged 0·35 kg ha?1 year?1, 0·09 kg ha?1 year?1, and 35 kg ha?1 year?1 (as N) respectively. Approximately 75% of annual TP export, 80% of annual SRP export and 70% of annual export occurred during 28 events per year. A small number of large‐magnitude events (>34 mm) accounted for 18–42% of annual TP export, 0–61% of annual SRP export and 13–33% of annual NO export. Our results show that temporal variability in nutrient export is largely governed by discharge in this basin, and export can be predicted from discharge. SRP and TP export can also be predicted from discharge, but only for events that are not large in magnitude. The sampling interval throughout events is important in obtaining precise estimates of nutrient export, as infrequent sampling intervals may over‐ or under‐estimate nutrient export by ± 45% per event for P. This study improves our understanding of and P export patterns and our ability to predict or model them by relating temporal variability in event nutrient export to discharge and processes occurring within the basin, and also by exploring the significance of sampling interval in the context of the importance of individual events, season and temporal variability during events. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   

10.
Concentrations and fluxes of mercury (Hg) species in surface waters of forested watersheds are affected by hydrological events. The mechanisms of Hg transport during these events are poorly understood and yet may influence Hg bioavailability and exposure to aquatic biota. Three storm events with varying magnitude and intensity were investigated (June, September and November 2005) at a forested watershed in the Adirondack region of New York State, USA. Concentrations of Hg species increased during these events, both above and downstream of wetlands in the watershed. While Hg flux was higher from wetland drainage, the Hg flux from the upland site exhibited a greater relative increase to elevated runoff. Hg flux was controlled by discharge; however, Hg species concentrations were not well correlated with discharge, dissolved organic carbon (DOC), or total suspended solids (TSS) through the duration of events. A counter‐clockwise hysteresis response of DOC with increasing runoff contrasted with the clockwise response for total Hg, suggesting different contributions from source areas for these solutes. Correspondence with elevated total K and NO3? (α < 0·05) during the rising limb of the hydrograph suggests rapid delivery of throughfall Hg, potentially enhanced by hillslope hollows, to the stream channel. As the watershed saturated, stream Hg appears to be derived from the soil Hg pool. Results suggest that particulate Hg did not contribute substantially to total Hg flux during events (<25%). These results emphasize the role of watershed attributes and storm characteristics in Hg transport and bioavailability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Shallow and bedrock groundwater from granitic aquifers were investigated for the hydrogeochemistry of major and minor constituents in an agricultural area. Nitrate concentrations were observed up to 49 mg/l as NO3‐N, with 22% of samples exceeding the drinking water standard, which could pose a significant threat because most residents rely on groundwater as their drinking water source. Principal component analysis revealed three principal components (PCs): (1) nitrate contamination, contributed by major cations, Cl?, SO and NO , (2) reduction processes positively involving Fe, Mn and B, and negatively involving dissolved oxygen and NO and (3) natural mineralization, involving HCO and F?. Cluster analysis, performed on the PC scores, resulted in seven sample groups, which were successfully identified by total depth, elevation and land use. The nitrate‐contaminated groups had mixed land uses, with locally concentrated residential areas. Uncontaminated groundwater groups were found in the natural environment, including high‐altitude spring water and bedrock groundwater with a higher degree of natural mineralization. Shallow groundwater groups in paddy fields in lowlands were affected by reducing environments, of which one group was characterized by high Fe, Mn and B, and negligible nitrate. Groundwater with intermediate nitrate and lower Cl? and SO was found primarily in hilly terrains with orchards and vegetable gardens, indicating lower contaminant loadings than lowland areas. Higher concentrations of F? and nitrate were observed in the nitrate‐contaminated water, which seemed unlikely to be explained by groundwater mixing. The strong acidity generated from nitrification may infiltrate deeper into the aquifer, induce accelerated weathering of bedrock and result in the coexistence of F? and nitrate, which may be an evidence of intense nitrate loading, leading to soil acidification. Multivariate statistical analysis successfully delineated hydrochemical characteristics of groundwater attained by natural and anthropogenic processes in an agriculturally stressed area with complex topographic land use patterns. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In watersheds impacted by nitrate from agricultural fertilizers, nitrification and denitrification may be decoupled as denitrification in the hyporheic zone is not limited to naturally produced nitrate. While most hyporheic research focuses on the 1–2 m of sediment beneath the stream bed, there are a limited number of studies that quantify nitrogen (N) cycling at larger hyporheic scales (10s of metres to kms). We conducted an investigation to quantify N cycling through a single meander of a low gradient, meandering stream, draining an agricultural watershed. Chemistry (major ions and N species) and hydrologic data were collected from the stream and groundwater beneath the meander. Evidence indicates that nearly all the shallow groundwater flowing beneath the meander originates as stream water on the upgradient side of the meander, and returns to the stream on the downgradient side. We quantified the flux of water beneath the meander using a numerical model. The flux of N into and out of the meander was quantified by multiplying the concentration of the important N species (nitrate, ammonium, dissolved organic nitrogen (DON)) by the modelled water fluxes. The flux of N into the meander is dominated by nitrate, and the flux of N out of the meander is dominated by ammonium and DON. While stream nitrate varied seasonally, ammonium and DON beneath the meander were relatively constant throughout the year. When stream nitrate concentrations are high (>2 mg litre?1), flow beneath the meander is a net sink for N as more N from nitrate in stream water is consumed than is produced as ammonium and DON. When stream nitrate concentrations are low (<2 mg litre?1), the flux of N entering is less than exiting the meander. On an annual basis, the meander hyporheic flow serves as a net sink for N. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The rivers across Sanjiang Plain are an important path in transferring total dissolved iron (TDFe) into Okhotsk Sea. Distribution of TDFe in main rivers (Amur River, Ussuri River, and Songhua River) and marshy rivers (Yalv River, Bielahong River, and Naoli River) of Sanjiang Plain from 2005 to 2008 was investigated. TDFe concentrations ranged from 0.05 to 6.40 mg L?1 (mean 0.76 mg L?1) and the TDFe species are in the following order: Colloidal iron > ionic iron > complexed iron. Compared with the main rivers, the marshy rivers showed higher TDFe concentration and dissolved organic carbon concentration (DOC), and lower pH value. TDFe concentrations were influenced by several factors, whereas, the concentration of DOC, , and showed remarkable correlation through Spearman correlation coefficient analysis. The rivers mostly showed high TDFe concentration on May and October when the farm activities frequently occur. After 50 years' cultivation of wetlands, the free iron (Fe2+ and Fe3+) showed distinct decrease from 195 to 88.2t in Naoli River. Land use change had decreased TDFe output in rivers of Sanjiang Plain because of the changed concentration and component of DOC, which had higher affinity and selectivity with iron.  相似文献   

14.
Dissolved organic carbon (DOC) concentrations vary among headwaters, with variation typically decreasing with watershed area. We hypothesized that streamflow intermittence could be an important source of variation in DOC concentrations across a small watershed, through (a) temporal legacies of drying on organic matter accumulation and biotic communities and (b) spatial patterns of connectivity with DOC sources. To test these hypotheses, we conducted three synoptic water chemistry sampling campaigns across a 25.5‐km2 watershed in south‐eastern Idaho during early spring, late summer, and late fall. Using changepoint analysis, we found that DOC variability collapsed at a consistent location (watershed areas ~1.3 to ~1.8 km2) across seasons, which coincided with the watershed area where variability in streamflow intermittence collapsed (~1.5 km2). To test hypothesized mechanisms through which intermittence may affect DOC, we developed temporal, spatial, and spatio‐temporal metrics of streamflow intermittence and related these to DOC concentrations. Streamflow intermittence was a strong predictor of DOC across seasons, but different metrics predicted DOC depending on season. Seasonal changes in the effects of intermittence on DOC reflected seasonal changes from instream to flowpath controls. A metric that captured spatial connectivity to sources significantly predicted DOC during high flows, when DOC is typically controlled by transport. In contrast, a reach‐scale temporal metric of intermittence predicted DOC during the late growing season, when DOC is typically controlled by instream processes and when legacy effects of drying (e.g., diminished biological communities) would likely affect DOC. The effects of intermittence on DOC extend beyond temporal legacies at a point. Our results suggest that legacy effects of intermittence do not propagate downstream in this system. Instead, snapshots of spatial patterns of intermittence upstream of a reach are critical for understanding spatial patterns of DOC through connectivity to DOC sources, and these processes drive patterns of DOC even in perennial reaches.  相似文献   

15.
This study examines the release of dissolved organic carbon (DOC) from upland peat during the period of the autumn flushing. Hydroclimatic conditions were monitored in conjunction with measurements of absorbance and the E4/E6 ratio of the stream draining an 11·4 km2 upland peat catchment in northern England. During two months of monitoring the effects of 67 separate rainfall events were examined showing that:
  • The peat behaves hydrologically as if it were a two end‐member system consisting of old, interevent, and new, event, water. Runoff is initiated by percolation excess of new water at the acrotelm–catotelm interface.
  • The discharge of dissolved organic matter behaves like a three end‐member system with the between‐event water being low in DOC and storm events being characterized by two types of water. Initial runoff being characterized by new water rich in DOC that gives way to new water depleted in DOC. This transition can be ascribed to the runoff progressing from throughflow within the acrotelm progressing to saturation‐excess overland flow.
  • Depletion of DOC during storm events is accompanied by a change in the character of the DOC as the E4/E6 ratio changes. This suggests that the decrease in DOC during events is the result of exhaustion of reserves rather than changes in the flowpaths being utilized by runoff.
  • The amount of carbon released in any event is critically dependent upon the time between events during which oxidation processes generate a reservoir of available carbon. Production of available carbon in the catchment is as high as 4·5 g C per day per m3 of peat, suggesting a turnover rate of peat of the order of 42 years. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

16.
Boreal watersheds contain a vast quantity of terrestrially derived dissolved organic matter (DOM) originating from wetland and forest soils, yet variation in the potential for photochemical transformation of boreal aquatic DOM sources remains poorly understood. Laboratory solar radiation exposure experiments were conducted on DOM samples collected in three seasons, across nine sites, representing contrasting catchment composition and watershed position to assess variation in the photochemical lability of boreal DOM source and stable carbon isotopic signature (δ13C) of photomineralized DOM. Dissolved organic carbon (DOC) loss rates during laboratory exposure were lowest in summer, suggesting that DOM may have been more photo-degraded during summer. DOM from upstream portions of forested stream sites and wetland-influenced sites was more photolabile relative to downstream portions and the river DOM, suggesting potential losses in photolabile DOM downstream and in the lower reaches of the watershed. Increased a254:a350 and spectral slope following sample exposure suggest photoproduction of low molecular weight (LMW) CDOM and/or a higher photoreactivity of high molecular weight versus LMW compounds. Photomineralization of nitrogen was regulated by organic nitrogen concentration and resulted in NH4 +-photoproduction rates between 0.01 and 0.3?μM N?h?1 and ecologically significant increases in NH4 + for these waters. The δ13C of the photomineralized DOM was positively correlated to initial DOC concentration and generally lower when initial DOC concentrations were lower, suggesting variation in photomineralized DOM δ13C may be a result of kinetic isotope fractionation. Results from this study demonstrate significant variation in the photochemical lability of boreal watershed sources of DOM. Such variation suggests landscape and environmental change has the potential to alter the biogeochemical role photochemical transformations play in downstream portions of boreal watersheds.  相似文献   

17.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Topography influences hydrological processes that in turn affect biogeochemical export to surface water on forested landscapes. The differences in long‐term average annual dissolved organic carbon (DOC), organic and inorganic nitrogen [NO3?‐N, dissolved organic nitrogen (DON)], and phosphorus (total dissolved phosphorus, TDP) export from catchments in the Algoma Highlands of Ontario, Canada, with similar climate, geology, forest and soil were established. Topographic indicators were designed to represent topographically regulated hydrological processes that influence nutrient export, including (1) hydrological storage potential (i.e. effects of topographic flats/depressions on water storage) and (2) hydrological flushing potential (i.e. effects of topographic slopes on potential for variable source area to expand and tap into previously untapped areas). Variations in NO3?‐N export among catchments could be explained by indicators representing both hydrological flushing potential (91%, p < 0.001) and hydrological storage potential (65%, p < 0.001), suggesting the importance of hydrological flushing in regulating NO3?‐N export as well as surface saturated areas in intercepting NO3?‐N‐loaded runoff. In contrast, hydrological storage potential explained the majority of variations among catchments in DON (69%, p < 0.001), DOC (94%, p < 0.001) and TDP (82%, p < 0.001) export. The lower explanatory power of DON (about 15% less) compared with that of DOC and TDP suggests another mechanism influencing N export, such as controls related to alternative fates of nitrogen (e.g. as gas). This study shows that simple topographic indicators can be used to track nutrient sources, sinks and their transport and export to surface water from catchments on forest landscapes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Aga Nowak  Andy Hodson 《水文研究》2015,29(6):1588-1603
Our novel study examines landscape biogeochemical evolution following deglaciation and permafrost change in Svalbard by looking at the productivity of various micro‐catchments existing within one watershed. It also sheds light on how moraine, talus and soil environments contribute to solute export from the entire watershed into the downstream marine ecosystem. We find that solute dynamics in different micro‐catchments are sensitive to abiotic factors such as runoff volume, water temperature, geology, geomorphological controls upon hydrological flowpaths and landscape evolution following sea level and glacial changes. Biotic factors influence the anionic composition of runoff because of the importance of microbial SO42? and NO3? production. The legacy of glaciation and its impact upon sea level changes is shown to influence local hydrochemistry, allowing Cl? to be used as a tracer of thawing permafrost that has marine origins. However, we show that a ‘glacial signal’ dominates solute export from the watershed. Therefore, although climatically driven change in the proglacial area has an influence on local ecosystems, the biogeochemical response of the entire watershed is dominated by glacially derived products of rapid chemical weathering. Consequently, only the study of micro‐catchments existing within watersheds can uncover the landscape response to contemporary climate change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号