首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Chloride is a major anion in soil water and its concentration rises essentially as a function of evapotranspiration. Compared to herbaceous vegetation, high transpiration rates are measured for isolated trees, shelterbelts or hedgerows. This article deals with the influence of a tree hedge on the soil and groundwater Cl? concentrations and the possibility of using Cl? as an indicator of transpiration and water movements near the tree rows. Cl? concentrations were measured over 1 year at different depths in the unsaturated zone and in the groundwater along a transect intersecting a bottomland oak hedge. We observed a strong spatial heterogeneity of Cl? concentrations, with very high values up to 2 g l?1 in the unsaturated zone and 1·2 g l?1 in the upper part of the groundwater. This contrasts with the low and homogeneous concentrations (60–70 mg l?1) in the deeper part of the groundwater. Cl? accumulation in the unsaturated zone at the end of the vegetation season allows us to identify the active root zone extension of trees. In winter, upslope of the tree row, downwards leaching partly renews the soil solution in the root zone, while the slow water movement under the trees or farther downslope results in Cl? accumulation and leads to a salinization of the soil and groundwater. This salinization is of the same order as experimental conditions produce negative effects on oak seedlings. The measurement of Cl? concentrations in the unsaturated zone under tree rows at the end of the vegetation season would indicate whether certain topographic, pedological or climatic conditions are likely to favour a strong salinization of the soil, as observed in the present study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Biologically mediated redox processes in the riparian zone, like denitrification, can have substantially beneficial impacts on stream water quality. The extent of these effects, however, depends greatly on the hydrological boundary conditions. The impact of hydrological processes on a wetland's nitrogen sink capacity was investigated in a forested riparian fen which is drained by a first‐order perennial stream. Here, we analysed the frequency distributions and time‐series of pH and nitrogen, silica, organic carbon and oxygen concentrations in throughfall, soil solution, groundwater and stream water, and the groundwater levels and stream discharges from a 3‐year period. During baseflow conditions, the stream was fed by discharging shallow, anoxic groundwater and by deep, oxic groundwater. Whereas the latter delivered considerable amounts of nitrogen (~0·37 mg l?1) to the stream, the former was almost entirely depleted of nitrogen. During stormflow, near‐surface runoff in the upper 30 cm soil layer bypassed the denitrifying zone and added significant amounts to the nitrogen load of the stream. Nitrate‐nitrogen was close to 100% of deep groundwater and stream‐water nitrogen concentration. Stream‐water baseflow concentrations of nitrate, dissolved carbon and silica were about 1·6 mg l?1, 4 mg l?1 and 7·5 mg l?1 respectively, and >3 mg l?1, >10 mg l?1 and <4 mg l?1 respectively during discharge peaks. In addition to that macroscale bypassing effect, there was evidence for a corresponding microscale effect: Shallow groundwater sampled by soil suction cups indicated complete denitrification and lacked any seasonal signal of solute concentration, which was in contrast to piezometer samples from the same depth. Moreover, mean solute concentration in the piezometer samples resembled more that of suction‐cup samples from shallower depth than that of the same depth. We conclude that the soil solution cups sampled to a large extent the immobile soil‐water fraction. In contrast, the mobile fraction that was sampled by the piezometers exhibited substantially shorter residence time, thus being less exposed to denitrification, but predominating discharge of that layer to the stream. Consequently, assessing the nitrogen budget based on suction‐cup data tended to overestimate the nitrogen consumption in the riparian wetland. These effects are likely to become more important with the increased frequency and intensity of rainstorms that are expected due to climate change. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans‐Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3? concentrations. Median increases in groundwater NO3? (by 0.7–0.9 mg‐N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans‐Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human‐influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3? to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3? (122–910 kg‐N/ha) was sufficient to cause the observed groundwater NO3? increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3? trends can be explained by small volumes of high NO3? modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long‐term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.  相似文献   

4.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The hydrology and nitrogen biogeochemistry of a riparian zone were compared before and after the construction of beaver dams along an agricultural stream in southern Ontario, Canada. The beaver dams increased surface flooding and raised the riparian water table by up to 1·0 m. Increased hydraulic gradients inland from the stream limited the entry of oxic nitrate‐rich subsurface water from adjacent cropland. Permeable riparian sediments overlying dense till remained saturated during the summer and autumn months, whereas before dam construction a large area of the riparian zone was unsaturated in these seasons each year. Beaver dam construction produced significant changes in riparian groundwater chemistry. Median dissolved oxygen concentrations were lower in riparian groundwater after dam construction (0·9–2·1 mg L?1) than in the pre‐dam period (2·3–3·9 mg L?1). Median NO3‐N concentrations in autumn and spring were also lower in the post‐dam (0·03–0·07 mg L?1) versus the pre‐dam period (0·1–0·3 mg L?1). In contrast, median NH4‐N concentrations in autumn and spring months were higher after dam construction (0·3–0·4 mg L?1) than before construction (0·13–0·14 mg L?1). Results suggest that beaver dams can increase stream inflow to riparian areas that limit water table declines and increase depths of saturated riparian soils which become more anaerobic. These changes in subsurface hydrology and chemistry have the potential to affect the transport and transformation of nitrate fluxes from adjacent cropland in agricultural landscapes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is ~0·6 m in thickness in the uplands and ~0·1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded ~0·1 m above the claypan/duripan. Perched groundwater discharge accounted for 30–60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate‐nitrogen concentrations were lower (e.g. 0·17 to 0·39 mg l?1) and dissolved organic carbon concentrations were higher (e.g. 5·97 to 3·24 mg l?1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface‐water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape‐scale water quality. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding the dynamics and mechanisms of soil water movement and solute transport is essential for accurately estimating recharge rates and evaluating the impacts of agricultural activities on groundwater resources. In a thick vadose zone (0–15 m) under irrigated cropland in the piedmont region of the North China Plain, soil water content, matric potential, and solute concentrations were measured. Based on these data, the dynamics of soil water and solutes were analysed to investigate the mechanisms of soil water and solute transport. The study showed that the 0–15‐m vadose zone can be divided into three layers: an infiltration and evaporation layer (0–2 m), an unsteady infiltration layer (2–6 m), and a quasi‐steady infiltration layer (6–15 m). The chloride, nitrate, and sulphate concentrations all showed greater variations in the upper soil layer (0–1 m) compared to values in the deep vadose zone (below 2 m). The average concentrations of these three anions in the deep vadose zone varied insignificantly with depth and approached values of 125, 242, and 116 mg/L. The accumulated chloride, sulphate, and nitrate were 2,179 ± 113, 1,760 ± 383, and 4,074 ± 421 kg/ha, respectively. The soil water potential and solute concentrations indicated that uniform flow and preferential flow both occurred in the deep vadose zone, and uniform flow was the dominant mechanism of soil water movement in this study. The piston‐like flow velocity of solute transport was 1.14 m per year, and the average value of calculated leached nitrate nitrogen was 107 kg/ha?year below the root zone. The results can be used to better understand recharge processes and improve groundwater resources management.  相似文献   

8.
ABSTRACT

Hydrogeochemical data of groundwater samples from 35 boreholes drilled in the Okposi-Uburu salt lake area are analysed. The data reveal that concentrations of dissolved geochemical constituents such as calcium (Ca2+), manganese (Mn2+), magnesium (Mg2+), chloride (C1?), and sulphate (SO2+ 4) ions show significant areal variations. Dissolved solids, chloride and manganese ions have concentrations up to and above the objectionable limits for drinking water in the salt lake area. Concentrations of dissolved solids in this zone are about 1200 mg 1?1. Concentrations of chloride and manganese ions are 350 mg 1?1 and 1.0 mg 1?1 respectively. These geochemical constituents and groundwater flow patterns show that transport of contaminants away from the source zone has been greatly influenced by advection, while in areas of high velocity dispersion is the controlling factor. Temperatures for the Okposi and Uburu salt springs are 34.4 and 37.5°C respectively. Bomb tritium indicated water of pre-1953 age. Deuterium and oxygen-18 showed high isotopic enrichment. The high concentrations of dissolved salts resulted from the combined effects of migration of dissolved salts through fractures at the lake floor and evaporation from the lake surface. These findings are related to the tectonic history of the Okposi-Uburu area.  相似文献   

9.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   

10.
Solute concentrations and fluxes in rainfall, throughfall and stemflow in two forest types, and stream flow in a 90 ha catchment in southern Chile (39°44′S, 73°10′W) were measured. Bulk precipitation pH was 6·1 and conductivity was low. Cation concentrations in rainfall were low (0·58 mg Ca2+ l?1, 0·13 mg K+ l?1, 0·11 mg Mg2+ l?1 and <0·08 mg NH4–N l?1), except for sodium (1·10 mg l?1). Unexpected high levels of nitrate deposition in rainfall (mean concentration 0·38 mg NO3–N l?1, total flux 6·3 kg NO3–N ha?1) were measured. Concentrations of soluble phosphorous in bulk precipitation and stream flow were below detection limits (<0·09 mg l?1) for all events. Stream‐flow pH was 6·3 and conductivity was 28·3 μs. Stream‐water chemistry was also dominated by sodium (2·70 mg l?1) followed by Ca, Mg and K (1·31, 0·70 and 0·36 mg l?1). The solute budget indicated a net loss of 3·8 kg Na+ ha?1 year?1, 5·4 kg Mg2+ ha?1 year?1, 1·5 kg Ca2+ ha?1 year?1 and 0·9 kg K+ ha?1 year?1, while 4·9 kg NO3–N ha?1 year?1 was retained by the ecosystem. Stream water is not suitable for domestic use owing to high manganese and, especially, iron concentrations. Throughfall and stemflow chemistry at a pine stand (Pinus radiata D. Don) and a native forest site (Siempreverde type), both located within the catchment, were compared. Nitrate fluxes within both forest sites were similar (1·3 kg NO3–N ha?1 year?1 as throughfall). Cation fluxes in net rainfall (throughfall plus stemflow) at the pine stand generally were higher (34·8 kg Na+ ha?1 year?1, 21·5 kg K+ ha?1 year?1, 5·1 kg Mg2+ ha?1 year?1) compared with the secondary native forest site (24·7 kg Na+ ha?1 year?1, 18·9 kg K+ ha?1 year?1 and 4·4 kg Mg2+ ha?1 year?1). However, calcium deposition beneath the native forest stand was higher (15·9 kg Ca2+ ha?1 year?1) compared with the pine stand (12·6 kg Ca2+ ha?1 year?1). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Studies on the hydrogeological conditions of the Mesogea basin in east Attica reveal that the aquifers developed on the post‐alpine formations at the inner part of the coastal brackish zone exhibit positive hydraulic head. These Neogene and Quaternary deposits present high salt concentrations. Selected points were sampled (total 85: 51 wells and 34 boreholes) in order to obtain hydrogeological and hydrochemical data for a better understanding of the structure, operation and dynamics of the aquifer of the area. Statistical methods, R‐mode factor analysis and scatter‐plot diagrams were used for the hydrochemical analysis and presentation of the data. The groundwater resources are relatively weak and there is significant quality degradation due to the geological structure of the greater area, as well as the bad management of the aquifer and anthropogenic activities. Groundwater is characterized by high salt concentrations. Electrical conductivity values range between 260 and 6970 µS cm?1. High salt concentrations at the coastal aquifers are due to sea intrusion, whereas they are attributed to the dissolution of minerals of the geological environment in the inland area. The groundwaters of the study area can be classified into five water types: Ca–HCO3, Mg–HCO3, Na–HCO3, Na–Cl and Mg–Cl. They are saturated in dolomite and calcite, whereas they are unsaturated in anhydrite. High ion concentrations, e.g. ] (0‐221 mg l?1), ] (0·01‐1·88 mg l?1), ] (0·01‐6·75 mg l?1), as well as high heavy metals concentrations are attributed to anthropogenic impacts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
In many agricultural areas, hedgerows give rise to strong expectations of reducing the inputs of excess nitrate to the groundwater and rivers. This study aims to analyse the spatial and seasonal influences of a hedgerow on nitrate dynamics in the soil and groundwater. Nitrate (NO3?) and chloride (Cl?) concentrations were measured with spatially dense sampling in the unsaturated soil and in the groundwater along a transect intersecting a bottomland oak (Quercus rubor) hedgerow after the growing season and during the dormant season. We explain NO3? dynamics by using Cl? as an index of tree‐root extension and water transfer. At the end of the growing season, NO3? is entirely absorbed by the trees over a large and deep volume corresponding to the rooting zone, where, in contrast Cl? is highly concentrated due to root exclusion. However, these observed patterns in the soil have no influence on the deep groundwater composition at this season. During the dormant season, water transfer processes feeding the shallow groundwater layer are different upslope and downslope from the hedgerow in relation to the thickness of the unsaturated zone. Upslope, the shallow groundwater is fed by rainwater infiltration through the soil which favours Cl? dilution. Right under the hedge and downslope, the rapid ascent of the groundwater near the ground surface prevents rainwater input and Cl? dilution. Under the hedgerow the highest concentrations of Cl? coincide with the absence of NO3? in the shallow groundwater layer and with high concentrations of dissolved organic carbon. The absence of NO3? during the dormant season seems to be due to denitrification in the hedgerow rooting zone when it is rapidly saturated by groundwater. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Water source and lake landscape position can strongly influence the physico‐chemical characteristics of flowing waters over space and time. We examined the physico‐chemical heterogeneity in surface waters of an alpine stream‐lake network (>2600 m a.s.l.) in Switzerland. The catchment comprises two basins interspersed with 26 cirque lakes. The larger lakes in each basin are interconnected by streams that converge in a lowermost lake with an outlet stream. The north basin is primarily fed by precipitation and groundwater, whereas the south basin is fed mostly by glacial melt from rock glaciers. Surface flow of the entire channel network contracted by ~60% in early autumn, when snowmelt runoff ceased and cold temperatures reduced glacial outputs, particularly in the south basin. Average water temperatures were ~4 °C cooler in the south basin, and temperatures increased by about 4–6 °C along the longitudinal gradient within each basin. Although overall water conductivity was low (<27 µS cm?1) because of bedrock geology (ortho‐gneiss), the south basin had two times higher conductivity values than the north basin. Phosphate‐phosphorus levels were below analytical detection limits, but particulate phosphorus was about four times higher in the north basin (seasonal average: 9 µg l?1) than in the south basin (seasonal average: 2 µg l?1). Dissolved nitrogen constituents were around two times higher in the south basin than in the north basin, with highest values averaging > 300 µg l?1 (nitrite + nitrate‐nitrogen), whereas particulate nitrogen was approximately nine times greater in the north basin (seasonal average: 97 µg l?1) than in the south basin (seasonal average: 12 µg l?1). Total inorganic carbon was low (usually <0·8 mg l?1), silica was sufficient for algal growth, and particulate organic carbon was 4·5 times higher in the north basin (average: 0·9 mg l?1) than in the south basin (average: 0·2 mg l?1). North‐basin streams showed strong seasonality in turbidity, particulate‐nitrogen and ‐phosphorus, and particulate organic carbon, whereas strong seasonality in south‐basin streams was observed in conductivity and dissolved nitrogen. Lake position influenced the seasonal dynamics in stream temperatures and nutrients, particularly in the groundwater/precipitation‐fed north‐basin network. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Quantifying of direct recharge derived from precipitation is crucial for assessing sustainability of well‐irrigated agriculture. In the North China Plain, the land use is dominated by groundwater‐irrigated farmland where the direct recharge derived from precipitation and irrigation. To characterize the mean rate and historical variance of direct recharge derived from precipitation, unsaturated zone profiles of chloride and δ18O in the dry river bed of the Beiyishui River were employed. The results show that archival time scale of the profile covers the duration from 1980 to 2002 (corresponding to depths from 5 to 2 m) which is indicated by matching the δ18O peaks in the isotope profile with the aridity indexes gained by instrumental records of annual precipitation and annual potential evaporation. Using the chloride mass balance method, the mean rate of the direct recharge corresponding to the archival time scale is estimated to be 3·8 ± 0·8 mm year?1, which accounts for about 0·7% of the long‐term average annual precipitation. Further, the direct recharge rates vary from 2·1 to 6·8 mm year?1 since 1980. Despite the subhumid climate, the estimate of recharge rates is in line with other findings in semiarid regions. The low rate of direct recharge is considered as a result of the relative dry climate in recent decades. In dry river bed, unsaturated zone profiles of chloride and δ18O combined with instrumental records could offer valuable information about the direct recharge derived from precipitation during droughts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Groundwater that bypasses the riparian zone by travelling along deep flow paths may deliver high concentrations of fertilizer‐derived NO3? to streams, or it may be impacted by the NO3? removal process of denitrification in streambed sediments. In a study of a small agricultural catchment on the Atlantic coastal plain of Virginia's eastern shore, we used seepage meters deployed in the streambed to measure specific discharge of groundwater and its solute concentrations for various locations and dates. We used values of Cl? concentration to discriminate between bypass water recharged distal to the stream and that contained high NO3? but low Cl? concentrations and riparian‐influenced water recharged proximal to the stream that contained low NO3? and high Cl? concentrations. The travel time required for bypass water to transit the 30‐cm‐thick, microbially active denitrifying zone in the streambed determined the extent of NO3? removal, and hydraulic conductivity determined travel time through the streambed sediments. At all travel times greater than 2 days, NO3? removal was virtually complete. Comparison of the timescales for reaction and transport through the streambed sediments in this system confirmed that the predominant control on nitrate flux was travel time rather than denitrification rate coefficients. We conclude that extensive denitrification can occur in groundwater that bypasses the riparian zone, but a residence time in biologically active streambed sediments sufficient to remove a large fraction of the NO3? is only achieved in relatively low‐conductivity porous media. Instead of viewing them as separate, the streambed and riparian zone should be considered an integrated NO3? removal unit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt–clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near‐saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day?1 and peak rate is 5·6 mm day?1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt–clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3–N ha?1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above‐ground vegetation is high—8·56 t dry matter ha?1 year?1 and 103 kg N ha?1 year?1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha?1year?1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above‐ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Submarine groundwater discharge (SGD) introduces solute and nutrients to the global oceans, resulting in considerable nutrient cycling and dynamics in the coastal areas. We have conducted high‐resolution, spatio‐temporal, lunar tidal cycle patterns and variability of discharged solute/nutrient assessment to get an overview of seasonal nutrient flux to the Bay of Bengal in eastern parts of the Indian subcontinent. Whereas the premonsoon season SGD was found to be dominant in the marine influence (M‐SGD), the postmonsoon season was found to be predominated by the terrestrial component of SGD (T‐SGD), extending from coast to near offshore. The solute fluxes and redox transformation were found to be extensively influenced by tidal and diurnal cycles, overlapping on seasonal patterns. We have assessed the possible role of SGD‐associated solute/nutrient fluxes and their discharge mechanisms, and their associated temporal distributions have severe implications on the biological productivity of the Bay of Bengal. The estimated annual solute fluxes, using the average end‐member concentration of the SGD‐associated nutrients, were found to be 240 and 224 mM·m?2·day?1 for NO3? and Fetot, respectively. Together with huge freshwater flux from the Himalayan and Peninsular Indian rivers, the SGD has considerable influence on the bay water circulation, stratification, and solute cycling. Thus, the observation from this study implies that SGD‐associated nutrient flux to the Bay of Bengal may function as a nutrient sink, which might influence the long‐term solute/nutrient flux along the eastern coast of India.  相似文献   

20.
Surface waters associated with peatlands, supersaturated with CO2 and CH4 with respect to the atmosphere, act as important pathways linking a large and potentially unstable global repository of C to the atmosphere. Understanding the drivers and mechanisms which control C release from peatland systems to the atmosphere will contribute to better management and modelling of terrestrial C pools. We used non‐dispersive infra‐red (NDIR) CO2 sensors to continuously measure gas concentrations in a beaver pond at Mer Bleue peatland (Canada); measurements were made between July and August 2007. Concentrations of CO2 in the surface water (10 cm) reached 13 mg C l?1 (epCO2 72), and 26 mg C l?1 (epCO2 133) at depth (60 cm). The study also showed large diurnal fluctuations in dissolved CO2 which ranged in amplitude from ~1·6 mg C l?1 at 10 cm to ~0·2 mg C l?1 at 60 cm depth. CH4 concentration and supersaturation (epCH4) measured using headspace analysis averaged 1·47 mg C l?1 and 3252, respectively; diurnal cycling was also evident in CH4 concentrations. Mean estimated evasion rates of CO2 and CH4 over the summer period were 44·92 ± 7·86 and 0·44 ± 0·25 µg C m?2s?1, respectively. Open water at Mer Bleue is a significant summer hotspot for greenhouse gas emissions within the catchment. Our results suggest that CO2 concentrations during the summer in beaver ponds at Mer Bleue are strongly influenced by biological processes within the water column involving aquatic plants and algae (in situ photosynthesis and respiration). In terms of carbon cycling, soil‐stream connectivity at this time of year is therefore relatively weak. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号