首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中尺度大气波动的波谱和谱函数——数学模型和计算方法   总被引:3,自引:2,他引:3  
张铭  安洁 《大气科学》2007,31(4):666-674
作者得到了准二维Boussinesq方程组,并用其研究了中尺度大气波动的波谱和谱函数。在一定条件下对该方程组线性化并取标准模后,可将其初边值问题转化为矩阵的广义特征值问题来进行数值求解,这样就可知原问题波谱和谱函数的性质。当无基本流且取地转参数、层结参数为常数时,可求得其波谱和谱函数的解析解。此时该模式中仅包含有一对重力惯性内波模态,且各模态均是简谐波;模态越高,垂直波数越大则波动传播得越慢,所有的模态均为离散谱,并存在聚点。对此作者用数值解作了验算,结果表明,该数值求解方案合理可行,对不太高的模态其精度也令人满意。在无基本流然而考虑层结的垂直变化后,则一般无法求取解析解,为此进行了数值求解。这时该模式仍仅包含有一对重力惯性内波的离散谱模态,不过由于层结参数的变化,各模态结构与简谐波出现了偏差。  相似文献   

2.
This is the second part of "Mesoscale Instability of a Baroclinic Basic Flow" which discusses the instability of a basic flow against mesoscale perturbations of transversal type.A bi-mode instability spectrum is obtained by generalizing the Eady model to ageostrophic regime in an f-plane:Eady modes present at the synoptic and subsynoptic scales,while the ageostrophic baroclinic mesoscale modes present at the inertial scales of a few tens to hundreds kilometers.The mesoscale mode is featured by an asymmetric "eat eyes" pattern in the vertical cross section and by an alternative distribution of divergence and vorticity in the horizontal direction.The growth rates of the mesoscale modes are about four times larger than those of Eady modes in magnitudes for the same wind profile.The major energy source for development both Eady mode and mesoscale mode is the baroclinic available energy stored in the rotational basic flow.  相似文献   

3.
We have determined free Rossby waves in the North Pacific Current by numerical methods. We have found only two stable solutions — the barotropic and first-order baroclinic Rossby shear modes. The influence of the current on the dispersion features of these waves is small for the barotropic shear mode, but is significant for the baroclinic shear mode. An explicit comparison of the dispersion relations for the baroclinic wave in case of vanishing and non-vanishing current is given. We have found at most one unstable solution per wave number. The unstable wave with largest growth rate has an e-folding time of 1.1 year. We have calculated vertical profiles of the stream function and the temperature for the various shear modes at various wave numbers. The temperature shear modes have been calculated for later usage in a Rossby wave model to be fitted to observed temperature data from the North Pacific Current area.  相似文献   

4.
利用复经验正交函数(CEOF)分解对冬季热带印度洋海洋上层流场异常做了模态分析和结果讨论,得到以下主要结果:该流场异常前两个模态均呈现赤道俘获波形式,其异常在赤道上最大,向南北两侧迅速衰减,呈现纬向流的形态;第一、二模态的性质分别是大洋赤道波动的半波和1波形态,这表明此时赤道波动异常在大洋流场异常中占有重要地位。冬季第一模态大洋垂直运动所导致的近表层海温异常与春、秋季不同,此时在赤道印度洋呈现正—负—正的经向分布态势,这与印度洋耦极子(Indian Ocean Dipole,IOD)的不同,并是IOD在冬季衰亡的直接原因。第二模态相应的海温异常则在赤道东印度洋呈现北负南正的分布态势。第一模态与南亚冬季风异常密切有关,为印度洋冬季风环流模态。第一、二模态都有明显的年际变化和年代际变化,年际变化均为3~5年,主要的年代际变化则分别为约18、22年,此外两者还均有约13年的年代际变化。本文第一、二模态年代际变化的主周期也是冬季北太平洋和冬季热带太平洋流场异常第二、一模态的主周期。  相似文献   

5.
Recent advances in observational technology have led to a more detailed knowledge of the low-level flow in hurricanes. In particular, quasi-streamwise rolls on a variety of scales have been observed. Some of these rolls have radial wavelengths of 4–10 km, which is comparable to rolls associated with instabilities inherent to Ekman-type boundary layers.The evolution and stability of the swirling boundary layer underneath a hurricane-like vortex is studied using both a nonlinear model and linearized stability analysis. The nonlinear model is an axisymmetric model of incompressible fluid flow, which is used to simulate the development of boundary layers underneath vortices with hurricane-like wind profiles. Axisymmetric rolls appear in these boundary layers, which have some similarities to the observed rolls in hurricanes. The axisymmetric flow is also used as the basic-state for a linearized stability analysis. The analysis technique allows for arbitrary variation in the radial and vertical directions for both the basic-state flow and the perturbations. Thus, the strong radial variations and curvature effects common to strong vortices are part of the analysis. The analysis finds both symmetric and asymmetric instabilities that are similar to those in the nonlinear simulations and in observations. The instabilities acquire some of their energy from the vertical shear associated with a reversal of the radial inflow at the top of the boundary layer, and some of their energy from vertical shear of the azimuthal flow. The radial flow energy conversion tends to increase for flows with less inertial stability and for modes oriented across the low-level shear; the azimuthal flow conversion increases for larger inertial stability and for modes aligned with the low-level shear.  相似文献   

6.
《大气与海洋》2013,51(4):415-427
Abstract

An Mw = 7.2 earthquake occurred on 15 June 2005 (utc) seaward of northern California off the west coast of North America. Based on the earthquake location and source parameters, the West Coast and Alaska Tsunami Warning Center issued a tsunami warning for the region extending from the California‐Mexico border to northern Vancouver Island, British Columbia (the first tsunami warning for this region since the 1994 Mw = 8.2 Shikotan earthquake). Six tide gauges on the west coast recorded tsunami waves from this event, with a maximum trough‐to‐crest wave height of 27.7 cm observed at Crescent City, California. Waves of 2.5 to 6.5 cm were measured at the five other sites: Port Orford (Oregon), North Spit and Arena Cove (California), and Tofino and Bamfield (British Columbia). The open‐ocean Deep‐ocean Assessment and Reporting of Tsunami (DART) buoys, 46404 and 46405, recorded tsunami waves of 0.5 and 1.5 cm, respectively, closely matching wave heights derived from numerical models. Incoming tsunami wave energy was mainly at periods of 10 to 40 min. The observed tsunami wave field is interpreted in terms of edge (trapped) and leaky (non‐trapped) waves and a “trapping coefficient” is introduced to estimate the relative contribution of these two wave types. Due to the high (3000 m) water depth in the source area, approximately two‐thirds of the total tsunami energy went to leaky wave modes and only one‐third to edge wave modes. The improved response to and preparedness for the 2005 California tsunami compared to the 1994 Shikotan tsunami is attributable, in part, to the operational capability provided by the open‐ocean bottom‐pressure recorder (DART) system, higher quality coastal tide gauges, and the effective use of numerical models to simulate real‐time tsunamis.  相似文献   

7.
Abstract

An analysis of the vertical structure equation of sigma coordinate primitive equation models is given that brings together and extends the work of several authors. We derive the vertical structure equation, and obtain its solution for a two‐parameter family of vertical structure profiles that includes those of previous studies. For this family, it is shown that in the limiting case of an unbounded atmosphere the spectrum becomes partially continuous, rather than entirely discrete as in the bounded case. A criterion is obtained for the validity of the linearization used to derive the vertical structure equations, and it turns out that this criterion is satisfied by all but one of the previous studies. Asymptotic expansions are derived and used to explain two observations of Wiin‐Nielsen (1971a), viz. why the equivalent depths of the internal modes are relatively insensitive to the precise choice of lower boundary condition, and why one choice in particular leads to the elimination of the external mode; these asymptotic expansions also yield surprisingly accurate numerical values for the equivalent depths. Finally, the projection of atmospheric data onto modes found by direct numerical approximation of the vertical structure equation is shown, particularly for the least grave modes, to be very sensitive to resolution; consequently care must be exercised when interpreting the results of data projection studies that use this approach.  相似文献   

8.
Abstract

Previous studies by Nakamura (1976) and Kirkwood and Derome (1977) have shown that the use of a relatively low vertical resolution in a numerical model of the atmosphere can lead to a poor representation of the forced stationary planetary waves. In the present study the consequences of this result on short‐term numerical forecasts are investigated. This is done by performing forecast experiments using a low resolution linear β‐plane model that is initialized with data extracted from the steady forced solution of the high resolution (reference) version of the model. The deviation of the low resolution forecast from the initial state, which can be interpreted as the forecast error due to insufficient vertical resolution, is examined as a function of time.

It is shown that the short‐range forecast error is dominated by a westward propagating external mode and that in time some of the eastward moving internal modes gain in importance.  相似文献   

9.
Abstract

An extensive set of measurements of currents, winds, subsurface pressures and water properties was undertaken in the summer of 1982 in Queen Charlotte Sound on the west coast of Canada. At most observation sites the summer‐averaged currents are found to be about 10 cm s?1, smaller than the tidal currents but comparable to the standard deviation of the non‐tidal currents. The strongest average flow was the outflow of surface water past Cape St James at the northwestern corner of the Sound. During strong winds from the north or northwest a strong outflow of near‐surface fresher water was also observed over Cook Bank in the south. Eddies dominate the motion in the interior of the Sound, as shown by the behaviour of a near‐surface drifter that remained in mid‐Sound for 40 days before a storm pushed it into Hecate Strait. The disorganized, weak currents in the central Sound will likely allow surface waters or floating material to remain there for periods of several weeks in summer.

Empirical orthogonal function analyses of fluctuating currents, subsurface pressures and winds reveal that a single mode explains most of the wind and pressure variance but not the current variance. The first two pressure modes represent two distinct physical processes. The first mode is a nearly uniform, up‐and‐down pumping of the surface, while the second mode tilts across the basin from east to west, likely due to geostrophic adjustment of wind‐driven currents. This mode also tilts from south to north, owing to along‐strait wind stress. Most contributions to the first mode currents come from meters near shore or the edge of a trough. Coherence is high between these second mode pressures and first mode currents and winds, and lower but still significant between first mode pressures and first mode currents and winds. It is therefore difficult to predict the behaviour of currents in Queen Charlotte Sound in summer from pressure measurements at a single site, but the difference in sea‐level across Hecate Strait is a more reliable indicator.  相似文献   

10.
Abstract

Sea surface temperature (SST) variability in the shelf‐slope region of the northwest Atlantic is described and then explained in terms of latent and sensible heat exchange with the atmosphere. The basic data are primarily engine‐intake temperature measurements made by merchant ships over the period 1946–80. The data have been grouped by month and area and an empirical orthogonal function analysis has been performed to determine the dominant modes of variation. The first two modes account for 44% of the total variance. The first mode corresponds to in‐phase changes of SST from the Grand Banks to Mid‐Atlantic Bight; the second mode corresponds to opposite changes of SST on the Grand Banks and Mid‐Atlantic Bight. The time‐dependent amplitudes of these large‐scale modes have pronounced low‐frequency components; the associated changes in SST are typically 3°C. It is also shown that winter anomalies last longer than summer anomalies; their typical decay scales are 6 and 3 months, respectively.

The onshore component of geostrophic wind is significantly correlated with the amplitude of the first mode in winter. We note the strong land‐sea contrast of temperature and humidity in this region during winter and explain the wind‐SST correlation in terms of latent and sensible heat exchanges. The second mode (i.e. the difference in SST between the Grand Banks and Mid‐Atlantic Bight) also appears to be related to changes in atmospheric circulation during the winter. A stochastic model for mixed layer temperature is finally used to model the SST autocorrelation functions. Following Ruiz de Elvira and Lemke (1982), it includes a seasonally‐varying feedback coefficient. The model successfully reproduces the extended persistence of winter anomalies with physically realistic parameter values but it cannot account for the summer reinforcement of winter anomalies on the Scotian Shelf. We speculate that this is due to the occasional entrainment of water, cooled the previous winter, into the shallow summer mixed layer.  相似文献   

11.
中国东北地区冬季气温趋势及反相模态分析   总被引:3,自引:0,他引:3  
利用1951—2010年我国东北地区共97个台站的逐月气温资料,应用trend-EOF和EOF分析方法研究了我国东北地区冬季气温的趋势模态和反相模态及其影响因子。trend-EOF的结果表明,东北地区均为一致型的趋势变化,trend-PC1有明显的年代际周期变化和更长期的上升趋势变化特征。去除全球变暖信号后的EOF分析结果表明:第一模态仍为全区一致型的空间分布,而第二模态的空间分布呈现南北反相型的分布特征,是东北冬季气温变化模态中极为重要的一部分,对应的时间序列有明显的年际周期变化,前两个模态可以解释总方差80%以上的变化。东北地区全区一致的上升趋势是在全球变暖大背景下发生的,既是对全球变暖的局地响应,同时全球变暖也使大气环流发生了变化,西伯利亚高压减弱,纬向环流增强,导致了东北地区冬季气温全区的上升趋势。赤道东太平洋的异常海温对第二模态的出现具有一定的预示意义,当太平洋出现典型的厄尔尼诺年海温距平场分布特征时,东北南部较常年偏暖,北部地区却较常年偏冷。  相似文献   

12.
冬季北太平洋海气环流年代际异常的统计动力诊断   总被引:2,自引:1,他引:1  
本文对冬季北太平洋大气和大洋环流做了联合复经验正交函数(CEOF)分解和小波分析, 并分别讨论了第一、二模态的年代际变化及其与海表温度异常(SSTA)年代际变化(PDO、NPGO模态)的关系, 得到以下主要结论:第一、二模态对时间系数的分析显示, 其与PDO、NPGO指数的相关性较高, 且小波分析表明其分别具有明显的准22、12年的年代际变化周期, 这与PDO、NPGO模态的周期相同;第一、二模态时间系数对北太平洋SSTA的回归分析表明, 其回归系数场的空间分布分别与PDO、NPGO的十分接近。第一、二模态空间场中大气环流异常分别类似于海平面气压异常(SLPA)的AL、NPO模态, 可分称其为AL、NPO的风场模;而大洋环流异常则分别相应于SSTA的PDO、NPGO模态, 可称其为PDO、NPGO的流场模。由第一、二模态近表层流场异常得到的垂直运动空间分布分别与PDO、NPGO的空间结构相似, 说明海洋上层海盆尺度大洋环流引起的垂直运动所导致的海温动力变化是形成PDO、NPGO的重要原因, 而大洋环流异常扮演着中介角色。  相似文献   

13.
斜压切变基流中横波型扰动的特征波动──Ⅰ:谱点分析   总被引:2,自引:0,他引:2  
张立凤  张铭 《气象学报》1999,57(5):571-580
文中对谱点的分布作了定性分析和数值计算。结果发现:当基流存在切变时,无论是重力惯性波还是涡旋波都存在连续谱。在通常的环境下,对天气尺度的扰动,3支波动的连续谱不重叠,3支波动明显可分;当扰动尺度小于临界波长l0时,可出现涡旋波和一支重力惯性波的两波连续谱区的重叠,当扰动尺度小于l0/2时,可出现涡旋波和一对重力惯性波的三波连续谱区的重叠,此时两种波动不可分。当出现重叠谱时,若出现不稳定扰动,其频率的实部落在重叠谱区。  相似文献   

14.
利用98个测站逐日最高气温资料和ERA-interim再分析数据集,对1979~2018年西南地区夏季高温热浪的时空分布特征及其年际变化异常成因进行研究。结果表明:(1)气候平均西南地区夏季高温热浪频次从东南向西北减少,空间差异显著。近几十年来,西南地区高温热浪总体上显著增多,并表现出明显的年际和年代际变化特征。(2)EOF分解第1模态主要表现为全区一致型,可以反映西南地区夏季高温热浪变化的主要特征。第2模态空间分布大致呈现出南正北负的反相变化特征。(3)西南地区高温热浪偏多可能与对流层中层青藏高原以东至朝鲜半岛的明显高压异常相联系。在这个高压异常的控制下,西太平洋副热带高压向西移动,这有利于西南地区降水减少,云量减少,到达地表的太阳短波辐射增加。同时,东亚西风急流位置北移,可以阻止来自中高纬的冷空气入侵西南地区,引起这里降水减少干旱频发。最终,异常干燥和炎热的地表条件,与有利的大气环流背景相配合,从而造成西南地区夏季高温热浪事件的发生。   相似文献   

15.
Abstract

Analysis of current, temperature and salinity records in the nearshore region of the Scotian Shelf during the Canadian Atlantic Storms Program (CASP), reveals that the inertial wave field is highly intermittent, with comparable amplitudes in the surface and deep layers. Clockwise current energy in the surface layer is concentrated at a frequency slightly below inertial, consistent with Doppler shifting by the strong mean current and/or straining by the mean flow shear, whereas the spectral peak in deep water is at the local inertial frequency. Clockwise coherence is high (γ2 ≥ 0.8) horizontally over the scale of the array (60 km × 120 km) and in the vertical, with upward phase propagation rates of 0.15–0.50 × 10?12 ms?1, inversely proportional to the local value of the Brunt Väisälä frequency. Clockwise current energy decreases in the onshore direction and appears to be completely inhibited on the 60‐m isobath.

A case study of the response to the CASP IOP 14 storm indicates that the inertial waves may be generated by a strong wind shift propagating onshore at a speed of 10 ms?1. On the eastern side of the array (Liscomb line), clockwise current oscillations propagate onshore in the surface layer at a rate (8.1 ± 0.9 m s?1) comparable with the speed of the atmospheric front, while waves in the pycnocline move offshore at a lower (internal wave) speed (1.8 m s?1). Furthermore the temperature and salinity fluctuations are in (out) of phase with longshore current in the deep (surface) layer. However, on the western side of the array (Halifax line), the inertial waves are more complex. A sharp steepening of phase lines at the coast indicates that the phase speed of clockwise current oscillations is considerably reduced and the evidence for offshore propagation of internal waves is less clear. The discrepancies between observations on the two lines suggest that the internal wave field is three‐dimensional.

Results of simple mixed‐layer models indicate that the inertial response near the surface is sensitive to the accurate definition of the local wind field, but not to certain model physics, such as the form of the decay term. The observations also show some qualitative similarities with models for two‐dimensional response to a moving front (e.g. Kundu, 1986), but the actual forcing terms are more complicated, based on IOP 14 wind measurements.  相似文献   

16.
斜压气流的中尺度稳定性 Ⅱ.横波型不稳定   总被引:18,自引:1,他引:18  
张可苏 《气象学报》1988,46(4):385-392
本文是“斜压气流的中尺度稳定性”的第二部份,讨论基本流对横波型中尺度扰动的稳定性。 将f-平面的Eady模型推广到非地转情况,得到斜压基流的双模态不稳定谱:在天气尺度和次天气尺度上出现Eady模态,在几十至几百公里的惯性尺度上出现非地转斜压中尺度模态。在垂直剖面上中尺度模态呈非对称“猫眼”流型,在水平方向上散度与涡度交替分布。对同一线性风速廓线,中尺度模态的发展率约为Eady模态的4倍,两种扰动发展的主要能源都是旋转基流中储存的斜压有效位能。  相似文献   

17.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   

18.
A linearized instability analysis model with five unknowns was proposed to describe disturbance motions under general oceanic background conditions, including large-scale current shear, density stratification, frontal zone, and arbitrary topography. A unified linear theory of wavelike perturbations for surface gravity waves, internal gravity waves and inertial gravity waves was derived for the adiabatic case, and the solution was then found using Fourier integrals. In this theory, we discarded the assumptions widely accepted in the literature concerning derivations of wave motions such as the irrotationality assumption for surface gravity waves, the rigid-lid approximation for internal gravity waves, and the long-wave approximation for inertial gravity waves. Analytical solutions based on this theory indicate that the complex dispersion relationships between frequency and wave-number describing the propagation and development of the three types of wavelike perturbation motions include three components: complex dispersion relationships at the sea surface; vertical invariance of the complex frequency; and expressions of the vertical wave-number (phase). Classical results of both surface waves and internal waves were reproduced from the unified theory under idealized conditions. The unified wave theory can be applied in the dynamical explanation of the generation and propagation properties of internal waves that are visible in the satellite SAR images in the southern part of the China Seas. It can also serve as the theoretical basis for both a numerical internal-wave model and analytical estimation of the ocean fluxes transported by wavelike perturbations.  相似文献   

19.
当斜压大气在高空急流轴附近满足条件f(f-/y)<0时,非地转运动激发出的重力惯性波将得到进一步的发展.此时,斜压大气的地转适应过程无法实现,非热成风和垂直环流之间将发生正反馈作用, 负的非热成风将激发并加强南部上升北部下沉的垂直环流,垂直上升流的加强将导致低层低压系统的发展和低层流场的辐合,使得低层低压系统南侧的气压梯度力增大,结果在辐合区南侧形成低空急流.此外,非热成风的分布对垂直环流和低空急流的形成发展也具有非常重要的作用.  相似文献   

20.
设计了一个热带赤道β-平面的两层海洋模式,在准长波近似下,应用最大截断模分析赤道波的基本形态,指出无论是正压模或斜压模Kelvin波、Rossby波及基本流所对应的“地形Rossby波”是最基本的波系,在基本流的一定切变条件下,它们之间可以耦合出一类不稳定波。在浅混合层近似和“快波近似”下,正压模和斜压模是可以分离的,因此可以分别分析它们的色散特征,由于它们的特征量不同,在同样波长(扰动的纬向尺度)下,扰动的增长率也不同,通过分析得出在一定参数下,斜压模扰动增长率为正压模的2倍。近似分析表明,混合层中流场的增长要快于温跃层,但温跃层的温度增长要比混合层明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号