首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Considering the high rates of evapotranspiration of Amazonian forests, understanding the impacts of deforestation on water loss rates is important for assessing those impacts on a regional and global scale. This paper quantifies evapotranspiration rates in two different pasture sites in Amazonia and evaluates the differences between the sites. In both places, measured evapotranspiration varies seasonally, decreasing during the dry season. The decrease is higher at the southwestern Amazonia site, while at the central Amazonia site, the decrease is less pronounced. During the dry season, average values of evapotranspiration are around 2.2?±?0.6?mm?day?1 in central Amazonia and 2.4?±?0.6?mm?day?1 in southwestern Amazonia, while during the wet season, those values are 2.1?±?0.6?mm?day?1 in central Amazonia and 3.5?±?0.8?mm?day?1 in southwestern Amazonia. On an annual basis, the pasture in southwestern Amazonia has higher evapotranspiration than in central Amazonia. We conclude that the main reason for this difference is the lower available energy in the wet season at the central Amazonian site, combined with a lower leaf area index at this site during the whole year. Still, the evapotranspiration is significantly controlled by the vegetation, which is well coupled with the local moisture conditions in the dry season.  相似文献   

2.
Industrial pollution has a significant effect on aerosol properties in Changsha City, a typical city of central China. Therefore, year-round measurements of aerosol optical, radiative and chemical properties from 2012 to 2014 at an urban site in Changsha were analyzed. During the observation period, the energy structure was continuously optimized, which was characterized by the reduction of coal combustion. The aerosol properties have obvious seasonal variations. The seasonal average aerosol optical depth (AOD) at 500 nm ranged from 0.49 to 1.00, single scattering albedo (SSA) ranged from 0.93 to 0.97, and aerosol radiative forcing at the top of the atmosphere (TOA) ranged from ?24.0 to 3.8 W m?2. The chemical components also showed seasonal variations. Meanwhile, the scattering aerosol, such as organic carbon, SO42?, NO3?, and NH4+ showed a decrease, and elemental carbon increased. Compared with observation in winter 2012, AOD and TOA decreased by 0.14 and ?1.49 W m?2 in winter 2014. The scattering components, SO42?, NO3? and NH4+, decreased by 12.8 μg m?3 (56.8%), 9.2 μg m?3 (48.8%) and 6.4 μg m?3 (45.2%), respectively. The atmospheric visibility and pollution diffusion conditions improved. The extinction and radiative forcing of aerosol were significantly controlled by the scattering aerosol. The results indicate that Changsha is an industrial city with strong scattering aerosol. The energy structure optimization had a marked effect on controlling pollution, especially in winter (strong scattering aerosol).  相似文献   

3.
We measured the methane flux of a forest canopy throughout a year using a relaxed eddy accumulation (REA) method. This sampling system was carefully validated against heat and CO2 fluxes measured by the eddy covariance method. Although the sampling system was robust, there were large uncertainties in the measured methane fluxes because of the limited precision of the methane gas analyzer. Based on the spectral characteristics of signals from the methane analyzer and the diurnal variations in the standard deviation of the vertical wind velocity, we found the daytime and nighttime precision of half-hourly methane flux measurements to be approximately 1.2 and 0.7?μg?CH4?m?2?s?1, respectively. Additional uncertainties caused by the dilution effect were estimated to affect the accuracy by as much as 0.21?μg?CH4?m?2?s?1 on a half-hourly basis. Diurnal and seasonal variations were observed in the measured fluxes. The biological emission from plant leaves was not observed in our studies, and thus could be negligible at the canopy-scale exchange. The annual methane sink was 835?±?175?mg?CH4?m?2?year?1 (8.35?kg?CH4?ha?1?year?1), which was comparable to the flux range of 379–2,478?mg?CH4?m?2?year?1 previously measured in other Japanese forest soils. This study indicated that the REA method could be a promising technique to measure canopy scale methane fluxes over forests, but further improvement of precision of the analyzer will be required.  相似文献   

4.
Fisheries and aquaculture are important sources of food for hundreds of millions of people around the world. World fish production is projected to increase by 15% in the next 10 years, reaching around 200 million tonnes per year. The main driver of this increase will be based on fish farming management in developing countries. In Brazil, fish farming is increasing due to the climate conditions and large supply of water resources, with the production system based on Nile tilapia (Oreochromis niloticus) farming in reservoirs. Inland waters like reservoirs are a natural source of methane (CH4) to the atmosphere. However, knowledge of the impact from intensive fish production in net cages on CH4 fluxes is not well known. This paper presents in situ measurements of CH4 fluxes and dissolved CH4 (DM) in the Furnas Hydroelectric Reservoir in order to evaluate the impact of fish farming on methane emissions. Measurements were taken in a control area without fish production and three areas with fish farming. The overall mean of diffusive methane flux (DMF) (5.9?±?4.5 mg CH4 m?2 day?1) was significantly lower when compared to the overall mean of bubble methane flux (BMF) (552.9?±?1003.9 mg CH4 m?2 day?1). The DMF and DM were significantly higher in the two areas with fish farming, whereas the BMF was not significantly different. The DMF and DM were correlated to depth and chlorophyll-a. However, the low production of BMF did not allow the comparison with the limnological parameters measured. This case study shows that CH4 emissions are influenced more by reservoir characteristics than fish production. Further investigation is necessary to assess the impact of fish farming on the greenhouse gas emissions.  相似文献   

5.
Snow density is important information for a wide range of activities including avalanche control, marketing, building-code development, weather forecasting, and water supply forecasting. Extended recent high-quality datasets from the mountainous regions of the Pacific Northwest coastal area are rare. This paper presents a study of an unusually long and continuous (January 1990 to April 2016) manually collected dataset of fresh snowfall measurements for Whistler Mountain, British Columbia, Canada. The dataset consists of snowboard core measurements that were collected by Whistler–Blackcomb ski patrol staff twice daily for avalanche control and resort-marketing purposes. These records were collated, transcribed, quality controlled, and made computer accessible in this study. A discussion of the characteristics of the data collection site and an assessment of data reliability are presented. Two examples of the many purposes to which this high-quality dataset might be put were studied. Climatic teleconnections to winter (December–February) mean snow density were examined, which revealed a positive relationship to the quadratic form of the Pacific Decadal Oscillation pattern (i.e., PDO2). In addition, an analysis of daily snow density relationships to air mass types was performed, which suggested that higher (lower) densities are associated with maritime inflow (arctic outflow) conditions. Both of these relationships appear to be mediated by the positive correlation between snow density and air temperature.

Based on the full dataset (N?=?1275 individual snow density measurements) for all months with measured snowfall, annual snowfall season (November to May) mean snow densities ranged from 77?kg?m?3 to 109?kg?m?3 with an overall mean of 91?kg?m?3, giving an overall snow-depth to water-depth ratio of 11:1.  相似文献   

6.

The present study comprehensively reports the simultaneous measurement of wet deposition of total inorganic nitrogen (TIN; which is the sum of the NH4+-N and NO3?-N) at three different sites in Nr emission hotspot of Indo-Gangetic plain (IGP) over a year-long temporal scale from October 2017 to September 2018. At rural Meetli (MTL) site, urban Baraut (BRT) site and industrial Loni (LNI) site, the annual wet deposition of NH4+-N was estimated as 21.87, 19.48 and 7.43 kg N ha?1 yr?1, respectively; the annual wet deposition NO3?-N was estimated as 12.96, 12.17 and 4.44 kg N ha?1 yr?1, respectively; and the annual wet deposition of TIN was estimated as 34.83, 31.64 and 11.87 kg N ha?1 yr?1, respectively. NH4+-N was dominantly contributing species in annual, monsoon and non-monsoon-time wet deposition of TIN at all sites. The spatial gradient (variability) in percent contribution of NH4+ to total annual volume-weighted mean (VWM) concentration of all analyte ions was observed as MTL (43.23%)?>?BRT (37.90%)?>?LNI (30%). On the other hand, the spatial gradient in percent contribution of NO3? to total annual VWM concentration of all analyte ions was observed as MTL (7.45%)?>?BRT (6.89%)?>?LNI (5.32%). The extremely narrow range of NH4+-N/NO3?-N ratios (ranging from 1.60 at BRT site to 1.69 at LNI site) showed the approximately equal relative abundance of oxidized and reduced nitrogen (N) deposition across all sites. Inferences from enrichment factor analysis, principal component analysis and Pearson’s correlation coefficient analysis suggested that across all sites, virtually all NH4+-N and NO3?-N depositions were originated anthropogenically. The annual wet deposition of TIN measured in this study showed?≥?6865%,?≥?6228% and?≥?2274% increment than the natural N deposition rate at MTL, BRT and LNI site, respectively. These empirically measured annual wet depositions of TIN also emanated theoretical transgression of critical N load threshold across all sites therefore signifying probable undermining of long-term elastic stability and resilience of ecosystems against stressor in the study domain.

  相似文献   

7.
Abstract

An extensive set of measurements of currents, winds, subsurface pressures and water properties was undertaken in the summer of 1982 in Queen Charlotte Sound on the west coast of Canada. At most observation sites the summer‐averaged currents are found to be about 10 cm s?1, smaller than the tidal currents but comparable to the standard deviation of the non‐tidal currents. The strongest average flow was the outflow of surface water past Cape St James at the northwestern corner of the Sound. During strong winds from the north or northwest a strong outflow of near‐surface fresher water was also observed over Cook Bank in the south. Eddies dominate the motion in the interior of the Sound, as shown by the behaviour of a near‐surface drifter that remained in mid‐Sound for 40 days before a storm pushed it into Hecate Strait. The disorganized, weak currents in the central Sound will likely allow surface waters or floating material to remain there for periods of several weeks in summer.

Empirical orthogonal function analyses of fluctuating currents, subsurface pressures and winds reveal that a single mode explains most of the wind and pressure variance but not the current variance. The first two pressure modes represent two distinct physical processes. The first mode is a nearly uniform, up‐and‐down pumping of the surface, while the second mode tilts across the basin from east to west, likely due to geostrophic adjustment of wind‐driven currents. This mode also tilts from south to north, owing to along‐strait wind stress. Most contributions to the first mode currents come from meters near shore or the edge of a trough. Coherence is high between these second mode pressures and first mode currents and winds, and lower but still significant between first mode pressures and first mode currents and winds. It is therefore difficult to predict the behaviour of currents in Queen Charlotte Sound in summer from pressure measurements at a single site, but the difference in sea‐level across Hecate Strait is a more reliable indicator.  相似文献   

8.
Springtime fetch in the Cape Bathurst Polynya System may present opportunities for winds to generate waves capable of propagating into the thick pack ice formed over the winter. A waves-in-ice event at a study site located on the Canadian Shelf in the southern Beaufort Sea that occurred 22–23 May 2011 is presented and analyzed for wave energy attenuation and dissipation characteristics. The event was monitored near the ice edge and, therefore, presents information on attenuation of waves from the ice edge into the pack. Waves of T?=?5?s, λ?=?37.5?m were observed up to approximately 143?m and approximately 77?m away from the ice edge during two separate observation periods of ice edge wave propagation. We estimated reflection coefficients of 53% and 52% and wave attenuation coefficients of α?=?2.4?×?10?2?m?1 and α?=?5.4?×?10?2?m?1, respectively, for the two periods. Estimated attenuation rates are an order of magnitude greater than in comparable studies and are inconsistent with previous findings of a “rollover” effect in attenuation rates for short-period waves.  相似文献   

9.
With the implementation of the Chinese Natural Forest Conservation Program (NFCP) in 1998, over millions of hectares of forest in northeastern China have been protected through natural restoration (closure of hills). The impact of this program on the carbon budget of soil has not been evaluated until now. This paper presents results from a 6-year study of total CO2 efflux from both soil and litter (R total), CO2 flux from soil (R soil), soil organic matter (SOM), soil microbe density, and litter input and root biomass at an uncut larch (Larix gmelinii) forest and at a natural restoration site. The natural restoration area is a clear-cut site that was formerly part of a continuous portion of the uncut larch forest. Our objectives were to: (1) quantify the magnitude of CO2 efflux from typical sites in northeastern China; (2) explore the changes in thermal conditions, SOM, and annual CO2 flux during the 6-year natural restoration, and (3) evaluate the impact of NFCP on soil carbon processes. The annual R soil at the clear-cut site (58.6–68.2 mol m???2 year???1) was 113.6–228.4% (mean 141.5%) higher than that at the uncut larch site (29.6–58.4 mol m???2 year???1). At the same time, annual CO2 from litter at the clear-cut site (2.0–14.2 mol m???2 year???1) was only 23.5–84.5% (mean 52.5%) of that at the uncut larch site (5.4–16.8 mol m???2 year???1). SOM at the surface layer of the clear-cut site was 75% of that at the uncut larch site, but the soil microbial biomass (carbon) at the clear-cut site was much higher than that at the larch site (p?<?0.05). The percentage of bacteria, fungi and actinomycetes also were largely different between both sites. Natural restoration at the clear-cut site strongly affected thermal conditions. Although the soil temperature (T soil) and effective accumulated $T_{\rm soil} > 0^{\circ}$ C at the clear-cut site was much higher, the temperature sensitivity (Q 10) was much lower than that at the uncut larch site, and their differences decreased linearly from 2001 to 2006 (p?<?0.05). Moreover, Q 10 at the clear-cut site significantly increased with the progress of natural restoration, which diminished the Q 10 difference between the two sites (slope?=???0.2792, r 2?=?0.4744, p?<?0.05). These data imply that the NFCP natural restoration process has positively recovered the thermal condition of the clear-cut site to the level of uncut larch forest during the 6-year period. However, linear regression analysis showed that the 6-year natural restoration only slightly affected the annual soil CO2 efflux and SOM at both sites, and also did not diminish the differences between the two sites (p?>?0.10), indicating that a much longer time is necessary to restore the soil carbon in the clear-cut site.  相似文献   

10.
Grain yields of wheat and maize were obtained from national statistics and simulated with an agricultural system model to investigate the effects of historical climate variability and irrigation on crop yield in the North China Plain (NCP). Both observed and simulated yields showed large temporal and spatial variability due to variations in climate and irrigation supply. Wheat yield under full irrigation (FI) was 8?t?ha?1 or higher in 80% of seasons in the north, it ranged from 7 to 10?t?ha?1 in 90% of seasons in central NCP, and less than 9?t?ha?1 in 85% of seasons in the south. Reduced irrigation resulted in increased crop yield variability. Wheat yield under supplemental irrigation, i.e., to meet only 50% of irrigation water requirement [supplemental irrigation (SI)] ranged from 2.7 to 8.8?t?ha?1 with the maximum frequency of seasons having the range of 4?C6?t?ha?1 in the north, 4?C7?t?ha?1 in central NCP, and 5?C8?t?ha?1 in the south. Wheat yield under no irrigation (NI) was lower than 1?t?ha?1 in about 50% of seasons. Considering the NCP as a whole, simulated maize yield under FI ranged from 3.9 to 11.8?t?ha?1 with similar frequency distribution in the range of 6?C11.8?t?ha?1 with the interval of 2?t?ha?1. It ranged from 0 to 11.8?t?ha?1, uniformly distributed into the range of 4?C10?t?ha?1 under SI, and NI. The results give an insight into the levels of regional crop production affected by climate and water management strategies.  相似文献   

11.
The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m?2 s?1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m?2 s?1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m?2 s?1.  相似文献   

12.
《Atmospheric Research》2009,91(2-4):287-302
Organic and elemental carbon (OC and EC) content in PM10 was studied at two sites in Prague, which were located in a suburb and in the downtown. Similar overall average levels were found for both species and also for the PM10 mass at the two sites (i.e., 5.5 and 4.8 μg/m3 for OC, 0.74 and 0.80 μg/m3 for EC, and 33 μg/m3 and 37 μg/m3 for the PM10 mass at the suburb and downtown site, respectively), but substantial differences were observed between the two sites in some seasons and/or meteorological situations. Approximately three times higher values were found for OC in winter compared to summer, with a higher winter/summer ratio for the suburban site. The differences for EC were smaller, but still, compared to summer, more than two times higher EC levels were observed during autumn at the suburban site and 1.5 higher EC levels in winter and autumn at the downtown site. The lowest OC to EC ratios at the suburban site were 3.4, while they were around 1.3 for the downtown site. It was found that the origin of the air masses had a major impact on the observed PM10 mass and OC levels, with largest concentrations noted for air masses recirculating over central Europe and arriving from southeastern Europe in winter. Trajectories coming from the west and northwest originating above the Atlantic Ocean and the Artic brought the cleanest air masses to the sites. For EC the largest difference between the two sites was observed for northwesterly winds during the non-heating season when the suburban site was upwind of Prague.  相似文献   

13.
Wheat is the second important cereal crop after rice in West Bengal. During last three decades, due to climate fluctuations and variability, the productivity of this crop remains almost constant, bringing the threat of food security of this State. The objectives of the present study were to assess the trend of climatic variables (rainfall, rainy days, and temperature) over six locations covering five major agro-climatic sub-zones of West Bengal and to estimate the variability of potential, simulated yield using crop simulation model (DSAATv4.5) and the yield gap with actual yield. There were no significant change of rainfall and rainy days in annual, seasonal and monthly scale at all the study sites. In general, the maximum temperature is decreasing throughout West Bengal. Except for Birbhum, the minimum temperature increased significantly in different study sites. District average yield of wheat varied from 1757 kg ha?1 at Jalpaiguri to 2421 kg ha?1at Birbhum. The actual yield trend ranged from ??4.7 kg ha?1 year?1 at Nadia to 32.8 kg ha?1 year?1 at Birbhum. Decreasing trend of potential yield was observed in Terai (Jalpaiguri), New Alluvial Zone (Nadia) and Coastal saline zone (South 24 Parganas), which is alarming for food security in West Bengal.  相似文献   

14.
Most atmospheric boundary-layer theories are developed over vegetative surfaces and their applicability at urban sites is questionable. Here, we study the intra-city variation of turbulence characteristics and the applicability of boundary-layer theory using building-morphology data across Helsinki, and eddy-covariance data from three sites: two in central Helsinki (400 m apart) and one 4 km away from the city centre. The multi-site measurements enable the analysis of the horizontal scales at which quantities that characterize turbulent transport vary: (i) Roughness characteristics vary at a 10-m scale, and morphometric estimation of surface-roughness characteristics is shown to perform better than the often used rule-of-thumb estimates (average departures from the logarithmic wind profile are 14 and 44 %, respectively). (ii) The drag coefficient varies at a 100-m scale, and we provide an updated parametrization of the drag coefficient as a function of z/z H (the ratio of the measurement height to the mean building height). (iii) The transport efficiency of heat, water vapour and CO2 is shown to be weaker the more heterogeneous the site is, in terms of sources and sinks, and strong scalar dissimilarity is observed at all sites. (iv) Atmospheric stability varies markedly even within 4 km across the city: the median difference in nocturnal sensible heat fluxes between the three sites was over 50W m?2. Furthermore, (v) normalized power spectra and cospectra do not vary between sites, and they follow roughly the canonical theory as developed over vegetated terrain.  相似文献   

15.
Abstract

Precipitation production is investigated for 9 intense thunderstorms that developed over the Lowveld in South Africa. A C‐band radar is used to observe the 3‐dimensional reflectivity pattern. Using an empirical relation between reflectivity factor and precipitation content and integrating over the storm volume provides an estimate of the total precipitation content aloft. Likewise, an area integration of the instantaneous rain rate at cloud base yields an estimate of the rate of total outflow. At their maturing stage, the storms had precipitation contents of 0.2 to 5.0 Tg and rainfall rates of about 0.3 to 2.0 Gg s?1. The total accumulation of rain at the ground ranged from 1 to 10 Tg. The characteristic storm updraft, defined as the ratio of the area‐averaged rainfall rate to the volume‐averaged precipitation content, was about 5 ms?1 for all storms. The time evolution of integral storm parameters is also presented and related to the overall storm development. The precipitation production values observed in the Lowveld storms compares well with previous estimates reported for large thunderstorms observed in Alberta and New England.  相似文献   

16.
Organic and elemental carbon (OC and EC) content in PM10 was studied at two sites in Prague, which were located in a suburb and in the downtown. Similar overall average levels were found for both species and also for the PM10 mass at the two sites (i.e., 5.5 and 4.8 μg/m3 for OC, 0.74 and 0.80 μg/m3 for EC, and 33 μg/m3 and 37 μg/m3 for the PM10 mass at the suburb and downtown site, respectively), but substantial differences were observed between the two sites in some seasons and/or meteorological situations. Approximately three times higher values were found for OC in winter compared to summer, with a higher winter/summer ratio for the suburban site. The differences for EC were smaller, but still, compared to summer, more than two times higher EC levels were observed during autumn at the suburban site and 1.5 higher EC levels in winter and autumn at the downtown site. The lowest OC to EC ratios at the suburban site were 3.4, while they were around 1.3 for the downtown site. It was found that the origin of the air masses had a major impact on the observed PM10 mass and OC levels, with largest concentrations noted for air masses recirculating over central Europe and arriving from southeastern Europe in winter. Trajectories coming from the west and northwest originating above the Atlantic Ocean and the Artic brought the cleanest air masses to the sites. For EC the largest difference between the two sites was observed for northwesterly winds during the non-heating season when the suburban site was upwind of Prague.  相似文献   

17.
Abstract

Airborne measurements in the atmospheric boundary layer (ABL) above the marginal ice zone (MIZ) on the Newfoundland Shelf reveal strong lateral variations in mean wind, temperature and the vertical fluxes of heat and momentum under conditions of cold, off‐ice wind. Flux measurements in (and near) the surface layer indicate that the neutral 10‐m drag coefficient depends on ice concentration, ranging from 2 × 10‐3 at 10% coverage to 5 × 10‐3 at 90%. Furthermore, cross‐ice‐edge transects consistently show increasing wind speed, temperature and heat flux in the off‐ice direction, but the momentum flux may either increase or decrease, depending on the relative importance of surface buoyancy flux and roughness. For the conditions encountered in this experiment, it appears surface wave maturity does not have a significant influence on the drag coefficient in fetch‐limited regimes near the ice edge.  相似文献   

18.
Temporal trends in wet deposition of major ions were explored at nationwide remote sites in Japan from April 1991 to March 2009 by using the seasonal Kendall slope estimator and the nonparametric seasonal Kendall test. For the trend analysis, datasets from eight remote sites (Rishiri, Echizenmisaki, Oki, Ogasawara, Shionomisaki, Goto, Yakushima, and Amami) were selected from the Japanese Acid Deposition Survey (JADS) conducted by the Ministry of the Environment. Deposition of H+ has been increasing at remote sites in Japan on a national scale. Significant (p????0.05) increases in H+ deposition were detected with changes of +3?C+9?%?year?1 at seven sites, while insignificant increases were observed at one site. Depositions of non-sea salt (nss)-SO 4 2? and NO 3 ? significantly increased at four and six sites, respectively, with changes of +1?C+3?%?year?1. Significant increases in precipitation at four sites would have contributed to the increase in depositions of H+, nss-SO 4 2? , and NO 3 ? . The emission trends of SO2 and NOx did not corresponded to the deposition trends of nss-SO 4 2? and NO 3 ? . The different trends indicated that temporal variation of precipitation amount trend dominated the deposition trends.  相似文献   

19.
Detailed wind velocity profiles were obtained by means of a rocket-sonde technique to a height of about 700 m at a site in the Canadian Northwest Territories. Less detailed temperature observations were also made using a balloon sonde. The site was some 100 km east of the easternmost range of the Rocky Mountains. The observations took place in mid-February when the overall atmospheric static stability was considerable. The results showed the presence of an arctic, atmospheric ‘thermocline’ some 500 m above ground, which sloped up or down considerably, with the generators of isothermal surfaces usually parallel to the nearby mountains, in the manner of upwelled or downwelled thermoclines in the ocean near shore. There was often strong baroclinic flow parallel to the mountain range. Noticeable frictional effects were confined to a near-ground layer always less than 100 m and mostly no more than 10 m in height. An Ekman-type boundary layer could only be identified in about one-third of the velocity profiles. The non-dimensionalized depth coefficient of such layers was close to 0.1, the geostrophic drag coefficient about 2.5×10?4.  相似文献   

20.
A good understanding of radiation fluxes is important for calculating energy, and hence, mass exchange at glacier surfaces. This study evaluates incoming longwave radiation measured at two nearby glacier stations in the high Andes of the Norte Chico region of Chile. These data are the first published records of atmospheric longwave radiation measurements in this region. Nine previously published optimised parameterisations for clear sky emissivity all produced results with a root mean square error (RMSE) ~20 W?m?2 and bias within ±5 W m?2, which is inline with findings from other regions. Six optimised parameterisations for incoming longwave in all sky conditions were trialled for application to this site, five of which performed comparably well with RMSE on daytime data <18 W?m?2 and bias within ±6 W?m?2 when applied to the optimisation site and RMSE <20 W?m?2 and bias within ±10 W m?2 when applied to the validation site. The parameterisation proposed by Mölg et al. (J Glaciol 55:292-302, 2009) was selected for use in this region. Incorporating the proposed elevation modification into the equation reduced the bias in the modelled incoming longwave radiation for the validation site. It was found that applying the parameterisation optimised in the original work at Kilimanjaro produced good results at both the primary and validation site in this study, suggesting that this formulation may be robust for different high mountain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号