首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 813 毫秒
1.
《大气与海洋》2013,51(4):225-243
Abstract

The Circumpolar Flaw Lead (CFL) system study is a Canadian‐led International Polar Year (IPY) initiative with over 350 participants from 27 countries. The study is multidisciplinary in nature, integrating physical sciences, biological sciences and Inuvialuit traditional knowledge. The CFL study is designed to investigate the importance of changing climate processes in the flaw lead system of the northern hemisphere on the physical, biogeochemical and biological components of the Arctic marine system. The circumpolar flaw lead is a perennial characteristic of the Arctic throughout the winter season and forms when the mobile multi‐year (MY) pack ice moves away from coastal fast ice, creating recurrent and interconnected polynyas in the Norwegian, Icelandic, North American and Siberian sectors of the Arctic. The CFL study was 293 days in duration and involved the overwintering of the Canadian research icebreaker CCGS Amundsen in the Cape Bathurst flaw lead throughout the annual sea‐ice cycle of 2007–2008.

In this paper we provide an introduction to the CFL project and then use preliminary data from the field season to describe the physical flaw lead system, as observed during the CFL overwintering project. Preliminary data show that ocean circulation is affected by eddy propagation into Amundsen Gulf (AG). Upwelling features arising along the ice edge and along abrupt topography are also detected and identified as important processes that bring nutrient rich waters up to the euphotic zone. Analysis of sea‐ice relative vorticity and sea‐ice area by ice type in the AG during the CFL study illustrates increased variability in ice vorticity in late autumn 2007 and an increase in new and young ice areas in the AG during winter. Analysis of atmospheric data show that a strong northeast–southwest pressure gradient present over the AG in autumn may be a synoptic‐scale atmospheric response to sensible and latent heat fluxes arising from areas of open water persisting into late November 2007. The median atmospheric boundary layer temperature profile over the Cape Bathurst flaw lead during the winter season was stable but much less so when compared to Russian ice island stations.  相似文献   

2.
Abstract

Three sites were instrumented to measure all components of the energy balance. The sites were located in the Churchill, Manitoba region and comprised a Sea Site on a sand spit 1 km seaward from the mainland, a Nearcoast Site 2 km inland from the coast and an Inland Site 65 km inland. Measurements were made continuously over a 90‐day period from 19 May to 16 August 1984. This period encompassed the bulk of the growing season.

The measurements were stratified into onshore and offshore wind directions and were compared for 10‐day periods. The comparisons show very significant differences attributable to the cold summer conditions promoted by the sea ice in Hudson Bay. The ground heat flux and latent heat flux were much greater during offshore winds but the sensible heat flux was greatest for onshore winds. Air temperatures averaged 7°C warmer for offshore than for onshore winds. The reasons for these differences are detailed and the climatic modifications that would probably result from earlier sea‐ice melt are discussed. Some implications of climatic modification are also noted.  相似文献   

3.
Abstract

A 30‐year record (1951–1980) of surface heat fluxes at Ocean Weather Station P in the northeastern Pacific Ocean (50°N, 145°W) was examined for differences in the interdecadal variation between fail and winter. During the latter part of the 1950s and the early 1960s, the winter surface heat flux from the ocean to the atmosphere diminished significantly whereas the fall heat flux increased slightly This difference in the modulation of the winter heat flux from the fall heat flux during this period appears to be caused by the presence of an atmospheric circulation anomaly resembling that of the Pacific/North America (PNA) low‐frequency variability mode during the winter season.  相似文献   

4.
Abstract

Present‐day results and CO2 sensitivity are described for two versions of a global climate model (genesis) with and without sea‐ice dynamics. Sea‐ice dynamics is modelled using the cavitating‐fluid method of Flato and Hibler (1990, 1992). The atmospheric general circulation model originated from the NCAR Community Climate Model version 1, but is heavily modified to include new treatments of clouds, penetrative convection, planetary boundary‐layer mixing, solar radiation, the diurnal cycle and the semi‐Lagrangian transport of water vapour. The surface models include an explicit model of vegetation (similar to BATS and SiB), multilayer models of soil, snow and sea ice, and a slab ocean mixed layer.

When sea‐ice dynamics is turned off, the CO2‐induced warming increases drastically around ~60–80°S in winter and spring. This is due to the much greater (and unrealistic) compactness of the Antarctic ice cover without dynamics, which is reduced considerably when CO2 is doubled and exposes more open ocean to the atmosphere. With dynamics, the winter ice is already quite dispersed for 1 × CO2 so that its compactness does not decrease as much when CO2 is doubled.  相似文献   

5.
Abstract

The Meighen Ice Cap synoptic climate classification system, developed from the study of six years of summer meteorological and glaciological observations, appears to account for significant variations in the energy‐ and mass‐balance climates of the ice cap. In relating the summer frequency of the three synoptic types to fourteen years of mass‐balance measurements, it was found that variations in surface conditions, solar angle and type of precipitation could be accounted for by the relative sequence of synoptic types. Further it was shown that the types could be represented by the position of the dominant 500‐mb cold Low influencing Meighen Island, thus providing a link between the mass balance and the general circulation.

Dominance of the winter pattern of a 500‐mb Low in the Hudson Bay –Baffin Island region throughout the summer season is capable of maintaining Meighen Ice Cap at its present size. A shift of the 500‐mb Low from the winter position directly to the Beaufort Sea or adjoining Polar Ocean area is capable of increasing the size of the ice cap. On the other hand, a shift of the 500‐mb vortex to the Asiatic side of the Polar Ocean before taking up position in the Beaufort Sea – Polar Ocean area produces negative mass‐balance conditions. When the 500‐mb Low remains on the Asiatic side of the Polar Ocean during most of the summer season the slow accumulation of two decades of Polar Ocean years is destroyed.  相似文献   

6.
Abstract

A lagged cross‐correlation analysis of climatic data from the period 1953–1984 was carried out for three regions of Northern Canada (Beaufort Sea, Hudson Bay, Baffin Bay/Labrador Sea) to determine the relationships between sea‐ice anomalies and surface air temperature and river discharge anomalies. Significant negative correlations at the 95% level were found between sea‐ice and temperature anomalies. A significant correlation at the 95% level was found between sea‐ice and river discharge anomalies in only one of two subregions studied.  相似文献   

7.
Abstract

The steady, coupled ice‐ocean circulation model of Willmott and Mysak (1989) for a meridional channel is applied to the Labrador Sea for the winter season. The model consists of a thermodynamic reduced‐gravity ocean combined with a variable thickness ice cover that is in thermal equilibrium. Upon specifying the forcing fields of surface air temperature, wind stress and water temperature along the open southern boundary, the winter climatological ice‐edge position, ice thickness, ocean circulation and temperature fields are determined in the channel domain. The sensitivity of the results to the various model parameters is examined. In particular, the optimum heat exchange coefficients for the interfaces of air‐water, ice‐water and air‐ice are found.

The model ice‐edge position compares favourably with the 50% winter climatological ice concentration isoline obtained from an analysis of 32 years (1953–84) of sea‐ice concentration data. The simulations of the ocean temperature and ice thickness are also quite realistic according to the observed records available. The model is also applied to two specific winters (1981 and 1983) during which anomalous sea‐ice and weather conditions prevailed in the Labrador Sea.  相似文献   

8.
Synoptic-scale atmospheric circulation patterns drive wind forcing of dynamic and thermodynamic processes in Arctic sea ice. Synoptic typing and compositing are common techniques used to identify a limited number of prevailing weather classifications that govern a region's climate. This work investigates atmospheric circulation patterns (surface to 250?hPa) for the southern Beaufort Sea and corresponding surface wind regimes within each synoptic type. Significant changes (p?<?0.05) in relative frequencies of a number of synoptic types were attributed to declining summer sea ice. Corresponding upper-level circulation anomalies show increasingly meridional atmospheric circulation. Synoptic Types 9 and 11 were identified as key October-November-December circulation features that represent deepening of the Aleutian low with concomitant strengthening of pressure gradients over the southern Beaufort Sea. Classification of coastal-based wind observations shows a shift towards increased easterly wind forcing. A case study of surface wind data from the CCGS Amundsen (2009–2011) provided a direct example of the surface wind regime within the marginal ice zone within each synoptic type during a period of reduced Arctic sea-ice cover.  相似文献   

9.
Abstract

Synthetic Aperture Radar (SAR) data has become an important tool for studies of polar regions, due to high spatial resolution even during the polar night and under cloudy skies. We have studied the temporal variation of sea and land ice backscatter of twenty‐four SAR images from the European Remote Sensing satellite (ERS‐1) covering an area in Lady Ann Strait and Jones Sound, Nunavut, from January to March 1992. The presence of fast ice in Jones Sound and glaciers and ice caps on the surrounding islands provides an ideal setting for temporal backscatter studies of ice surfaces. Sample regions for eight different ice types were selected and the temporal backscatter variation was studied. The observed backscatter values for each ice type characterize the radar signatures of the ice surfaces. This time series of twenty‐four SAR images over a 3‐month period provides new insights into the degree of temporal variability of each surface. Ice caps exhibit the highest backscatter value of ‐3.9 dB with high temporal variability. Valley glacier ice backscatter values decrease with decreasing altitude, and are temporally the most stable, with standard deviations of 0.08–0.10 dB over the 90‐day period.

First‐year ice and lead ice show a negative trend in backscatter values in time and a positive correlation of up to 0.59 with air temperature over the 90‐day period. For first‐year ice and lead ice, episodes of large temperature fluctuations (±12°C) are associated with rapid changes in backscatter values (±2 dB). We attribute the backscatter increase to a temperature‐induced increase in brine volume at the base of the snow pack. Multi‐year ice, conglomerate ice and shore ice are relatively stable over the 3‐month period, with a backscatter variation of only a few dBs. An observed lag time of up to three days between backscatter increase/decrease and air temperature can be attributed to the insulation effect of the snow cover over sea ice. The net range of the backscatter values observed on the most temporally stable surface, valley glacier ice, of about 0.30 dB indicates that the ERS‐1 SAR instrument exceeds the 1 dB calibration accuracy specified for the Alaska SAR Facility processor for the three winter months.  相似文献   

10.
Abstract

This study reports on tower measurements from the intertidal zone taken during the ice‐free period between August 1 and September 20, 1985. Sea and air temperatures showed ranges of 8 and 14°C, respectively, and both were colder during onshore than during offshore winds. Onshore winds were associated with a nearly saturated atmosphere whereas offshore ones were quite dry. Surface albedo was twice as great for low tide as for high tide. The ratio net/solar radiation was 13% less at low tide owing to both the larger albedo and the stronger long‐wave radiation loss. Heat fluxes into the bottom sediments were small with net gains in August and net losses in September. During the day, heat storage in the water was large and positive. This occurred even with the tide out, when the ponded water continued to warm. At night the water gave up heat, both for low and high tide, and especially late in the season. The latent heat flux was always positive and was largest by day during low tide and by night during high tide. The sensible heat flux was positive for onshore winds and often negative for offshore winds. Under all wind directions heat storage constituted 60% of net radiation, the latent heat flux 35% and the remainder was proportioned equally between the sensible heat flux and the flux into the bottom sediments.  相似文献   

11.
Abstract

A study is presented of the seasonal and interannual variability of Arctic sea‐ice extent over the 32‐year period 1953–84. The data set used consists of monthly sea‐ice concentration values given on a 1°‐latitude grid and represents a 7‐year extension of the 25‐year data set analysed by Walsh and Johnson (1979). By focussing attention on the variability in seven distinct subregions that circumscribe the polar region, a number of interesting spatial patterns emerge in the regional seasonal cycles and anomalies of ice coverage. For example, the time‐scale of the smoothed anomaly fluctuations varies from a 4–6 year cycle in the western Arctic (e.g. the Beaufort Sea) to a decadal one in the eastern Arctic (e.g. the Barents Sea). Also, in agreement with earlier studies, a significant out‐of‐phase relationship was found between the 25‐month smoothed anomalies in the Beaufort and Chukchi Sea region and the Greenland Sea. It is proposed that this behaviour is related to atmospheric pressure anomalies associated with the see‐saw in winter air temperature between northern Europe and western Greenland. Finally, a particularly large 9‐year ice anomaly in the Greenland Sea that was centred on 1968 appears to have evolved into a substantial 4‐year Labrador Sea anomaly that peaked in 1972. Both of these anomalies coincided with the passage of the “ Great Salinity Anomaly”, which traversed cyclonically around the subpolar gyre in the northern North Atlantic during the period 1968–82.  相似文献   

12.
Abstract

The relationship between the Arctic and subarctic sea‐ice concentration (SIC) anomalies, particularly those associated with the decadal‐scale Greenland and Labrador Seas “Ice and Salinity Anomalies (ISAs) “, and the overlying atmospheric circulation fluctuations is investigated using the singular value decomposition (SVD) and composite map analysis methods. The data analyzed are monthly SIC and sea level pressure (SLP) anomalies, which cover the northern hemisphere poleward of 45°N and extend over the 41‐year period 1954–1994.

The SVD1 (first) mode of the coupled variability, which accounts for 57% of the square covariance, is for the most part an atmosphere‐to‐ice forcing mode characterized by the decadal timescale. The aforementioned ISA anomalies are clearly captured by this mode whose SIC anomalies are dominated by a strong dipole across Greenland. However, as part of the same mode, there is also a weaker SIC dipole in the northern North Pacific which has opposite‐signed anomalies in the Sea of Okhotsk and the Bering Sea. It is also shown that there exists a significant negative correlation between the decadal SIC variability in the Greenland‐Barents Seas region associated with this mode and the North Atlantic Oscillation, whose spectrum also exhibits a quasi‐decadal signal.

The SVD2 mode accounts for 12% of the square covariance and shows no evidence of a dominant forcing field of either SIC or SLP. This SVD mode exhibits very low frequency (interdecadal) variability, and its co‐variability is mainly concentrated in the northern North Pacific. It appears to be a high‐latitude extension of the recently investigated interdecadal North Pacific Oscillation. The spatial structure of the second mode complements the case of the first SVD mode whose co‐variability mainly occurs in the northern North Atlantic.  相似文献   

13.
Abstract

This study treats the energy balance during fast‐ice and floating‐ice conditions and examines overall seasonal patterns. The rate of ablation of the fast ice was controlled equally by net radiation and air temperature. The ratio of net/solar radiation increased 2.5 times during the ablation period owing to the decrease in ice albedo. Air temperature in the ablation zone was up to 8°C colder than that over the adjacent snow‐free terrestrial surface and remained near 0°Cfor the full ablation period. The sensible heat flux was small and downward (negative), whereas the evaporative heat flux was small and positive. Thus, the energy used in melting the ice was approximately equal to that provided by the net radiation. Above‐freezing air temperatures decreased the albedo through surface melting thus increasing net radiation. This combination of higher temperature and large net radiation was associated with offshore winds and resulted in large ablation relative to periods with colder onshore winds.

The floating‐ice period is one of great variability owing to changing ice conditions, variable current behaviour, tidal cycles and changing wind direction. The intertidal zone acts as a major heat sink, both early and late in the floating‐ice period. The turbulent heat fluxes were small and were either positive or negative. Nearly all of the energy from net radiation was used in melting ice and in warming tidal water during high tide and in warming the residual tidal ponds and in melting stranded ice rafts during low tide.

The overall study period, from May to September, included most of the season of positive radiation balance and above‐freezing temperatures. Winds were dominantly onshore in the first half of the period and equally onshore and offshore in the second half. Wind frequencies resembled longer term averages for other stations on James Bay and Hudson Bay. The ratio of net to solar radiation was at a maximum during the ice‐free period in August, whereas for adjacent terrestrial surfaces, it was largest at the summer solstice. Land‐sea breezes first developed in mid‐July and were influential in making offshore winds the dominant nocturnal regime. As a result, offshore winds were associated with small magnitudes of net radiation. Onshore winds were more than 5°C colder than those blowing offshore and their vapour pressure deficits were three times smaller. Convective heat fluxes were small for onshore winds and very small and usually negative for offshore winds. For all wind directions throughout the period, most of the available radiant energy was used to melt ice and to heat the sea water. This is a pattern similar to that of the ice‐covered or open sea and dissimilar to that of the adjacent terrestrial environment. It implies that the main energy‐balance transitions, during onshore airflow, occur at the high‐tide line.  相似文献   

14.
Abstract

The climatic role of sea ice is assessed in a survey of the recent literature. Theoretical or model‐based results are compared with existing evidence of ice‐atmosphere interactions over scales ranging from the local and regional to the hemispheric and global.

The evidence shows that sea‐ice fluctuations are meteorologically important locally, primarily through associations with air temperature. On the regional and hemispheric scales, atmospheric and sea‐ice fluctuations are correlated according to both observational evidence and model experiments. While the causal links have not been evaluated quantitatively, there is evidence that the stronger signal occurs in the response of the ice to the atmosphere. On the longer time‐scales, model experiments and qualitative arguments suggest that sea ice may play a major role in the climatic change. However, the results of large‐scale coupled model simulations contain deficiencies and must be viewed with caution pending more realistic treatments of sea‐ice dynamics, leads, ice thickness variations, and the areally‐integraled effects of the small‐scale features of sea ice.  相似文献   

15.
Abstract

The sensitivity of the annual cycle of ice cover in Baffin Bay to short‐wave radiation is investigated. The Princeton Ocean Model (POM) is used and is coupled with a multi‐category, dynamic‐thermodynamic sea‐ice model in which the surface energy balance governs the growth rates of ice of varying thickness. During spring and summer the short‐wave radiation flux dominates other surface heat fluxes and thus has the greatest effect on the ice melt. The sensitivity of model results to short‐wave radiation is tested using several, commonly used, shortwave parameterizations under climatological, as well as short‐term, atmospheric forcing. The focus of this paper is short‐term and annual variability. It is shown that simulated ice cover is sensitive to the short‐wave radiation formulation during the melting phase. For the Baffin Bay simulation, the differences in the resulting ice area and volume, integrated from May to November, can be as large as 45% and 70%, respectively. The parameterization of the effect of cloud cover on the short‐wave radiation can result in the sea‐ice area and volume changes reaching 20% and 30%, respectively. The variation of the cloud amount represents cloud data error, and has a relatively small effect (less then ±4%) on the simulated ice conditions. This is due to the fact that the effect of cloud cover on the short‐wave radiation flux is largely compensated for by its effect on the net near‐surface long‐wave radiation flux.  相似文献   

16.
Abstract

Monthly mean sea‐level pressure (SLP) data from the Northern Hemisphere for the period January 1952‐December 1987 are analysed. Fluctuations in this field over the Arctic on interannual time‐scales and their statistical association with fluctuations farther south are determined. The standard deviation of the interannual variability is largest compared with that of the annual cycle along the seaboards of the major land masses. The SLP anomalies are generally in phase over the entire Arctic Basin and extend south over the northern Russia and Canada, but tend to be out of phase with fluctuations at mid‐latitudes. The anomalies are most closely associated with fluctuations over the North Atlantic and Europe except near the Chukchi Sea to the north of Bering Strait. The associations with the North Pacific fluctuations become increasingly more prominent at most Arctic sites (e.g. the Canadian Arctic Archipelago) as the time‐scale increases.

Associations between the SLP fluctuations and atmospheric indices that represent processes affecting sea‐ice drift (wind stress and wind stress curl) are determined. In every case local associations dominate, but some remote ones are also evident. For example, changes in the magnitude of the wind stress curl over the Beaufort Sea are increased if the atmospheric circulation over the North Pacific is intensified; wind stress over the region where sea ice is exchanged between the Beaufort Gyre and the Transpolar Drift Stream is modulated by both the Southern and North Atlantic Oscillations.

Severe sea‐ice conditions in the Greenland Sea (as measured by the Koch Ice Index) coincide with a weakened atmospheric circulation over the North Atlantic.  相似文献   

17.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

18.
Abstract

Airborne measurements in the atmospheric boundary layer (ABL) above the marginal ice zone (MIZ) on the Newfoundland Shelf reveal strong lateral variations in mean wind, temperature and the vertical fluxes of heat and momentum under conditions of cold, off‐ice wind. Flux measurements in (and near) the surface layer indicate that the neutral 10‐m drag coefficient depends on ice concentration, ranging from 2 × 10‐3 at 10% coverage to 5 × 10‐3 at 90%. Furthermore, cross‐ice‐edge transects consistently show increasing wind speed, temperature and heat flux in the off‐ice direction, but the momentum flux may either increase or decrease, depending on the relative importance of surface buoyancy flux and roughness. For the conditions encountered in this experiment, it appears surface wave maturity does not have a significant influence on the drag coefficient in fetch‐limited regimes near the ice edge.  相似文献   

19.
Tom Agnew 《大气与海洋》2013,51(2):259-280
Abstract

This study looks at simultaneous changes in atmospheric circulation and extremes in sea‐ice cover during winter. Thirty‐six years of ice‐cover data and 100‐kPa height and 50–100‐kPa thickness data are used. For the entire Arctic, the study found a general weakening of the Aleutian and Icelandic lows for heavy (i.e. severe) compared with light sea‐ice conditions suggesting reduced surface heating as a possible cause. The weakening of the two lows would also reduce meridional atmospheric circulation and poleward heat transport into the Arctic. The study also looks at three regions of high sea ice and atmospheric variability: the Bering Sea, the Davis Strait/Labrador Sea and the Greenland Sea. For the Bering Sea, heavy sea‐ice conditions were accompanied by weakening and westward displacement of the Aleutian Low again suggesting reduced surface heating and the formation of a secondary low in the Gulf of Alaska. This change in circulation is consistent with increased cold air advection over the Bering Sea and changes in storm tracks and meridional heat transport found in other studies. For the Davis Strait/Labrador Sea, heavy ice‐cover winters were accompanied by intensification of the Icelandic Low suggesting atmospheric temperature and wind advection and associated changes in ocean currents as the main cause of heavy ice. For the Greenland Sea no statistically significant difference was found. It is felt that this may be due to the important role that ice export through Fram Strait and ocean currents play in determining ice extent in this region.  相似文献   

20.
Abstract

The spatial and temporal relationships between subarctic Canadian sea‐ice cover and atmospheric forcing are investigated by analysing sea‐ice concentration, sea‐level pressure and surface air temperature data from 1953 to 1988. The sea‐ice anomalies in Hudson Bay, Baffin Bay and the Labrador Sea are found to be related to the North Atlantic Oscillation (NAO) and the Southern Oscillation (SO). Through a spatial Student's i‐test and a Monte Carlo simulation, it is found that sea‐ice cover in both Hudson Bay and the Baffin Bay‐Labrador Sea region responds to a Low/Wet episode of the SO (defined as the period when the SO index becomes negative) mainly in summer. In this case, the sea‐ice cover has a large positive anomaly that starts in summer and continues through to autumn. The ice anomaly is attributed to the negative anomalies in the regional surface air temperature record during the summer and autumn when the Low/Wet episode is developing. During strong winter westerly wind events of the NAO, the Baffin Bay‐Labrador Sea ice cover in winter and spring has a positive anomaly due to the associated negative anomaly in surface air temperature. During the years in which strong westerly NAO and Low/Wet SO events occur simultaneously (as in 1972/73 and 1982/83), the sea ice is found to have large positive anomalies in the study region; in particular, such anomalies occurred for a major portion of one of the two years. A spectral analysis shows that sea‐ice fluctuations in the Baffin Bay‐Labrador Sea region respond to the SO and surface air temperature at about 1.7‐, 5‐ and 10‐year periods. In addition, a noticeable sea‐ice change was found (i.e. more polynyas occurred) around the time of the so‐called “climate jump” during the early 1960s. Data on ice thickness and on ice‐melt dates from Hudson Bay are also used to verify some of the above findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号