首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

The medium‐scale wave regime, consisting largely of zonal wavenumbers 5–7, frequently dominates the summer Southern Hemisphere tropospheric circulation. We perform a diagnostic study of this circulation as simulated by the Canadian Climate Centre (CCC) general circulation model (GCM). The analysis of Hövmöller diagrams, space‐time and zonal wavenumber spectra shows that the CCC GCM is able to simulate the observed medium‐scale wave regime.

The zonally averaged meridional eddy heat and momentum transports and the associated baroclinic and barotropic energy conversions are also examined. The distributions of the transports on the vertical plane agree well with the observations. After comparison with the observed December‐January‐February 1979 distributions, some quantitative differences remain: the heat transport is too weak aloft and too large near the surface, whereas the momentum transport tends to be too weak. The baroclinic and barotropic conversions show a maximum in the medium‐scale waves. The time evolution of the Richardson number of the mean flow suggests that the medium‐scale wave is due to a baroclinic instability.  相似文献   

2.
斜压气流的中尺度稳定性 Ⅱ.横波型不稳定   总被引:18,自引:1,他引:18  
张可苏 《气象学报》1988,46(4):385-392
本文是“斜压气流的中尺度稳定性”的第二部份,讨论基本流对横波型中尺度扰动的稳定性。 将f-平面的Eady模型推广到非地转情况,得到斜压基流的双模态不稳定谱:在天气尺度和次天气尺度上出现Eady模态,在几十至几百公里的惯性尺度上出现非地转斜压中尺度模态。在垂直剖面上中尺度模态呈非对称“猫眼”流型,在水平方向上散度与涡度交替分布。对同一线性风速廓线,中尺度模态的发展率约为Eady模态的4倍,两种扰动发展的主要能源都是旋转基流中储存的斜压有效位能。  相似文献   

3.
We discuss the nonlinear transfers possible in a quasigeostrophic fluid with a basic stratification taken from oceanic data. The energy and enstrophy conservation laws imply a cascade of energy to larger total scale (including both the horizontal scale, defined as wavelength/2π, and the deformation radius of the vertical mode). The triplet interactions among components with various horizontal scales and vertical structures, represented by the vertical mode numbers, are considered in detail for exchanges involving the barotropic and first three baroclinic modes. The initial transfer rates from one component into the other two are estimated and the most rapid transfers described as a function of the initial scale and mode number. These results suggest that barotropic motions will cascade to larger-scale barotropic motions, first baroclinic small-scale motions will transfer to first baroclinic larger scales, and first baroclinic large-scale motions will cascade to barotropic and first baroclinic motions at the deformation scale. Second and third mode motions prefer to transfer energy into small-scale (second or third mode deformation radius) first and third baroclinic mode motions.We also show the relationship of these triplet interactions to Rossby wave instabilities and resonant triads. For the latter motions, the weakness of the nonlinearity adds additional constraints which impty that the motions will tend to become zonal.  相似文献   

4.
In this paper, the adaptation process in low latitude atmosphere is discussed by means of a two-layer baroclinic model on the equator β plane, showing that the adaptation process in low latitude is mainly dominated by the internal inertial gravity waves. The initial ageostrophic energy is dispersed by the internal inertial gravity waves, and as a result, the geostrophic motion is obtained in zonal direction while the ageostro-phic motion maintains in meridional direction, which can be called semi-geostrophic balance in barotropic model as well as semi-thermal-wind balance in baroclinic model. The vertical motion is determined both by the distribution of the initial vertical motion and that of the initial vertical motion tendency, but it is unrelated to the initial potential vorticity. Finally, the motion tends to be horizontal. The discussion of the physical mechanism of the semi-thermal-wind balance in low latitude atmosphere shows that the achievement of the semi-thermal-wind balance is due to the adjustment between the stream field and the temperature field through the horizontal convergence and divergence which is related to the vertical motion excited by the internal inertial gravity waves. The terminal adaptation state obtained shows that the adaptation direction between the mean temperature field and the shear flow field is determined by the ratio of the scale of the initial ageostrophic disturbance to the scale of one character scale related to the baroclinic Rossby radius of deformation. The shear stream field adapts to the mean temperature field when the ratio is greater than 1, and the mean temperature field adapts to the shear stream field when the ratio is smaller than 1.  相似文献   

5.
Abstract

Baroclinic instability of zonal flows with different latitudinal structures is examined, using a linear, quasi‐geostrophic two‐level ß‐plane model. The flows have different amounts of skew, with respect to the channel centre, at different vertical levels. The results are interpreted in terms of the instability of the baroclinic components of the zonal flows. Because of the presence of latitudinal asymmetries, a spectrum of meridional modes is generated in the perturbation. In general, the meridional spectrum has two peaks: a primary peak at the planetary basic flow scale, and a secondary peak near the radius of deformation. As neutral stability is approached, the latter scale becomes more important, i.e. there is a tendency for more small‐scale structure near neutral stability. The perturbation zonal scale is close to the radius of deformation. The eddy amplitudes and momentum fluxes are also examined. The case that best applies to the atmosphere is also discussed.  相似文献   

6.
垂直切变基流中非地转涡旋波的不稳定   总被引:10,自引:6,他引:10       下载免费PDF全文
张立凤  王丽琼  张铭 《大气科学》2001,25(3):391-400
利用Boussinesq方程研究了扰动传播方向与垂直切变基流有一夹角时的不稳定问 题,即斜交型不稳定问题。当Richardson数不大时,在α中尺度波段其增长率最大,此时该斜交型不稳定的性质既不同于重力惯性波的对称不稳定,也与Rossby波的斜压不稳定有差异,而是非地转涡旋波的不稳定。  相似文献   

7.
We advance our prior energy- and flux-budget (EFB) turbulence closure model for stably stratified atmospheric flow and extend it to account for an additional vertical flux of momentum and additional productions of turbulent kinetic energy (TKE), turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). For the stationary, homogeneous regime, the first version of the EFB model disregarding large-scale IGW yielded universal dependencies of the flux Richardson number, turbulent Prandtl number, energy ratios, and normalised vertical fluxes of momentum and heat on the gradient Richardson number, Ri. Due to the large-scale IGW, these dependencies lose their universality. The maximal value of the flux Richardson number (universal constant ≈0.2–0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. For heterogeneous stratification, when internal gravity waves propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. Internal gravity waves also reduce the anisotropy of turbulence: in contrast to the mean wind shear, which generates only horizontal TKE, internal gravity waves generate both horizontal and vertical TKE. Internal gravity waves also increase the share of TPE in the turbulent total energy (TTE = TKE + TPE). A well-known effect of internal gravity waves is their direct contribution to the vertical transport of momentum. Depending on the direction (downward or upward), internal gravity waves either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.  相似文献   

8.
热带气旋"黄蜂"动热力特征演变的模拟分析   总被引:9,自引:1,他引:8  
以"中国登陆台风试验"项目的目标热带气旋"黄蜂"为对象,用高分辨数值模式成功模拟了其近海加强和登陆减弱的过程,从定量和时间演化角度细致分析了热带气旋(TC)各阶段的动、热力特征,包括对流加热特性、温湿结构、稳定度、涡散度、垂直运动、垂直环流、水平环流等基本动、热力因子的时空结构特征,揭示了该热带气旋的大量结构特点,如对流加热的强盛和非对称性、强热带风暴的无眼结构、低层的东暖西冷结构、涡度的准圆形对称结构、东/西侧环流正/斜压性的差异、低层辐合和上升运动的准周期振荡等等.这些结构特征的揭示对深入细致地研究和认识南海热带气旋的特点和演变机理具有重要学术意义.  相似文献   

9.
《大气与海洋》2013,51(2):132-146
Abstract

This paper presents a hydrodynamic study of the St. Lawrence Estuary's estuarine transition zone, a 100 km region where fresh water from the river mixes with salt water from the estuary. The circulation of the estuarine transition zone is driven by strong tides, a large river flow, and well‐defined salinity gradients. For this study, a three‐dimensional hydrodynamic model was applied to the estuarine transition zone of the St. Lawrence Estuary and used to examine stratification and density‐driven baroclinic flow. The model was calibrated to field observations and subsequently predicted water level elevations, along‐channel currents, and salinity with mean errors of less than 9%, 11%, and 17%, respectively. The baroclinic density‐driven currents were distinguished from the tidal barotropic currents by using principal component analysis. Stratification and baroclinic flow were observed to vary throughout the estuarine transition zone on tidal and subtidal spring‐neap time scales. On a semidiurnal tidal time scale, stratification was periodic, and baroclinic flow was represented by pulses of sheared exchange flow, suggesting that neither buoyancy forcing nor turbulent mixing is dominant at this scale. On a subtidal spring‐neap time scale, stratification and baroclinic flow varied inversely with tidal energy, increasing on weak neap tides and decreasing on strong spring tides.  相似文献   

10.
用三层模式研究了对称不稳定。结果表明,当气层的厚度(扰动的垂直尺度)与扰动的水平尺度达到最佳配合时,有最大的对称不稳定增长率。而Ri数越小,出现最不稳定时所要求的气层厚度与扰动的水平尺度的比就越大。  相似文献   

11.
12.
The alternating change of the two meiyu front rain-bands caused by the alternating change between the moist potential vorticities is discussed. The main factors of the change of moist potential vorticity are the vertical and horizontal divergence of moist potential vorticity flux as well as the vertical transport caused by the cumulus mass flux. Also discussed is the possibility that the WAVE-CISK conditional symmetric instability in the baroclinic moist atmosphere leads to the forming of the double rain-bands and their roller-shaped circulation features. Theoretical analyses show that the latitudinal disturbance scale-selection by the primitive moisture model of the latent heat release in cumulus convection depends on the stratification instability parameter (Ri number) and viscous coefficient of eddy.  相似文献   

13.
利用斜压两层模式研究了赤道平面近似下的低纬热带大气适应过程。指出低纬斜压大气适应过程主要受重力惯性内波控制。通过重力惯性内波对初始非地转能量的频散,使纬向运动达到地转平衡,而经向维持非地转运动,正压模式下称为半地转平衡,斜压模式下称为半热成风平衡。通过对垂直运动方程的求解,可知,垂直运动只与重力惯性内波相联系,其产生与初始斜压位涡度无关,而只与初始时刻的垂直运动和垂直运动倾向有关,半地转适应使运动趋向水平运动。讨论了半热成风平衡的建立及其物理机制,指出由于重力惯性内波激发出垂直运动,与垂直运动相联系的水平辐合辐散调整流场和温度场之间的关系,使温压场最终达到半热成风平衡。通过对适应过程终态的分析,指出平均温度场和切变流场之间的适应方向决定于初始非半地转扰动的尺度与斜压Rossby变形半径有关的特征尺度的比值,当比值大于1时,切变流场向平均温度场适应;当比值小于1时,平均温度场向切变流场适应  相似文献   

14.
Abstract

The baroclinic circulation in the mouth of Hudson Strait is modelled using general results for nearly geostrophic flow along an indented coastline. A simple T‐junction model is first discussed, followed by a somewhat more faithful idealization that includes the sharp northern tip of Labrador, the southwest tip of Baffin Island and part of Ungava Bay. The results show that the mouth of Hudson Strait does not present a significant obstacle to baroclinic flow in and out of it. We thus conclude that the observed recirculation must be due to other effects.  相似文献   

15.
Abstract

The meridional heat flux in the North Pacific Ocean at 35°N is estimated primarily using hydrographic section data, following the method of Bryan (1962) and Bennett (1978). The meridional heat flux in the Kuroshio, computed using the Worthington and Kawai section across the current, was 1.76 PW (positive northward), with over 80% of the flux occurring in the upper 400 m. The large‐scale baroclinic heat flux across the rest of the section (145°? to North America) was —1.0 PW for the indopac (1976) section and —0.5 PW for the IOS‐72 section. The fluxes across the sections were also concentrated in the upper ocean with the upper 300 m accounting for over 75% of the flux. The mean horizontal barotropic gyre circulation results in little (0.1 PW) net heat flux because the northward‐moving water is only about 0.5°C warmer than the southward‐moving water. The contributions due to Ekman heat flux (—0.16 PW) and flow through the Japan Sea (0.13 PW) are also relatively small. The eddy heat flux is quite uncertain, but estimated to be about 0.3 PW. The total meridional heat flux, for the 1976 section, is calculated to be about 1.0 PW. The total is very dependent on the baroclinic heat flux in the highly variable Kuroshio region. The northward heat flux found in this study is more consistent with large‐scale atmospheric estimates and with Bryden et al. ‘s (1990) estimate for 24°? in the Pacific.  相似文献   

16.
Summary In the past, experimental investigations as well as theoretical considerations have shown that within fronts and inversions wind shear and vertical temperature gradient adjust in such a way that the Richardson number is at its critical value. Results from aircraft measurements now suggest that the shear within moving cold fronts, warm fronts and inversions shows different behaviour because of the different mechanisms controlling the Richardson numbers. This leads to higher Richardson numbers, and therefore to lower amounts of wind shear within moving cold fronts when compared to warm fronts and inversions.With 9 Figures  相似文献   

17.
Abstract

We examine the response of stably stratified airflow to a slab‐symmetric diabatic forcing associated with condensation in long‐lasting precipitation bands. The steady‐state linearized Boussinesq equations are used to model the diagnostic relationship between the vertical motion field, the heating source and the ambient flow. The basic‐state flow is assumed to be horizontally uniform and non‐rotating, but the static stability and wind vary in the vertical. Linear theory shows that the speed of the along‐band wind component is unimportant for slab‐symmetric heating since it cannot contribute towards the advection of buoyancy or vertical motion.

For typical atmospheric stratification and a moving heating source associated with a cloud band, the Taylor‐Goldstein equation is solved numerically. The numerical results show that the cross‐band wind shear tilts the updraft core and broadens it. While the magnitude of the shear is increased, the circulation becomes stronger. The details of the wind profile are also important in determining the intensity and structure of the circulation. When the wind profile indicates a convex bulge (i.e. the low‐level shear is weaker than the upper‐level shear), the circulation becomes slightly weaker in comparison with the linear wind profile. Conversely, the circulation becomes stronger when the wind profile has a concave shape. Increasing the concave bulge tends to enhance the circulation but not in a monotonic fashion. This non‐monotonic relation between the vertical motion and the parabolic wind profile is interpreted in terms of kinetic energy changes of parcels that interchange their altitudes.  相似文献   

18.
This case study introduces measurements of turbulent fluxes in a nocturnal boundary layer in North Germany with the new helicopter-borne turbulence measurement system HELIPOD, a detailed data analysis and examination in regard of systematic errors of the instrument, and some comparison with local similarity theory and experiments of the past, in order to confirm the occurrence of small vertical turbulent fluxes. The examined nocturnal boundary layer offered excellent conditions to analyse the quality of the measurement system. In this connection, a detailed look at a strong ground-based inversion disclosed small turbulent fluxes with a spectral maximum at ten metres wavelength or less, embedded in intermittent turbulence. For verification of these fluxes, the measurements were compared with well established results from past experiments. Local similarity theory was applied to calculate dimensionless variances of the turbulent quantities, which were found in good agreement with other observations. Since shear and stratification varied significantly on the horizontal flight legs due to global intermittency, a method was developed to determine vertical gradients on a horizontal flight pattern, by use of small fluctuations of the measurement height. With these locally determined gradients, gradient transport theory became applicable and the turbulent diffusivities for heat and momentum, the Richardson number, and the flux Richardson number were estimated within isolated strong turbulent outbursts. Within these outbursts the flux Richardson number was found between 0.1 and 0.2. The functional relationship between the gradient Richardson number and the turbulent Prandtl number agreed well with observations in past experiments and large eddy simulation. The impact of the stratification on the vertical turbulent exchange, as already described for the surface layer using Monin–Obukhov similarity, was analogously observed in the very stably stratified bulk flow when local scaling was applied.  相似文献   

19.
当斜压大气在高空急流轴附近满足条件f(f-/y)<0时,非地转运动激发出的重力惯性波将得到进一步的发展.此时,斜压大气的地转适应过程无法实现,非热成风和垂直环流之间将发生正反馈作用, 负的非热成风将激发并加强南部上升北部下沉的垂直环流,垂直上升流的加强将导致低层低压系统的发展和低层流场的辐合,使得低层低压系统南侧的气压梯度力增大,结果在辐合区南侧形成低空急流.此外,非热成风的分布对垂直环流和低空急流的形成发展也具有非常重要的作用.  相似文献   

20.
This is the second part of "Mesoscale Instability of a Baroclinic Basic Flow" which discusses the instability of a basic flow against mesoscale perturbations of transversal type.A bi-mode instability spectrum is obtained by generalizing the Eady model to ageostrophic regime in an f-plane:Eady modes present at the synoptic and subsynoptic scales,while the ageostrophic baroclinic mesoscale modes present at the inertial scales of a few tens to hundreds kilometers.The mesoscale mode is featured by an asymmetric "eat eyes" pattern in the vertical cross section and by an alternative distribution of divergence and vorticity in the horizontal direction.The growth rates of the mesoscale modes are about four times larger than those of Eady modes in magnitudes for the same wind profile.The major energy source for development both Eady mode and mesoscale mode is the baroclinic available energy stored in the rotational basic flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号