首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Microwave-assisted tetrabutyl ammonium-impregnated sulphate-crosslinked chitosan was synthesized for enhanced adsorption of hexavalent chromium. The adsorbent obtained was extensively characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray studies. Various isotherm models such as Langmuir, Freundlich and Dubinin–Radushkevich were studied to comprehend the adsorption mechanism of hexavalent chromium by the adsorbent. Maximum adsorption capacity of 225.9 mg g?1 was observed at pH 3.0 in accordance with Langmuir isotherm model. The sorption kinetics and thermodynamic studies revealed that adsorption of hexavalent chromium followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. A column packed with 1 g of adsorbent was found to give complete adsorption of Cr(VI) up to 900 mL of 200 mg L?1 solution which discerns the applicability of the adsorbent material for higher sample volumes in column studies. The effective adsorption results were obtained due to both ion exchange and ion pair interaction of adsorbent with hexavalent chromium. Greener aspect of overall adsorption was regeneration of the adsorbent which was carried out using sodium hydroxide solution. In the present study, the regenerated adsorbent was effectively reused up to ten adsorption–desorption cycles with no loss in adsorption efficiency.  相似文献   

2.
The batch removal of hexavalent chromium from aqueous solutions using almond shell, activated sawdust, and activated carbon, which are low-cost biological wastes under different experimental conditions, was investigated in this study. The influences of initial concentration, adsorbent dose, adsorbent particle size, agitation speed, temperature, contact time, and pH of solution were investigated. The adsorption was solution pH dependent and the maximum adsorption was observed at a solution pH of 2.0. The capacity of chromium adsorption under equilibrium conditions increased with the decrease in particle sizes. The equilibrium was achieved for chromium ion after 30?min. Experimental results showed that low-cost biosorbents are effective for the removal of pollutants from aqueous solution. The pseudo-second-order kinetic model gave a better fit of the experimental data as compared to the pseudo-first-order kinetic model. Experimental data showed a good fit with the Freundlich isotherm model. Changes in the thermodynamic parameters, including Gibbs free energy (??Go), enthalpy (??Ho), and entropy (??So), indicated that the biosorption of hexavalent chromium onto almond shell, activated sawdust, and activated carbon was feasible, spontaneous, and endothermic in the temperature range 28?C50?°C.  相似文献   

3.
Here, a novel one-dimensional composite of poly(m-phenylenediamine)s coating on filamentous Streptomyces was successfully constructed via a controllable polymerization reaction. The synthesized composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Their adsorption isotherm and kinetics for aqueous hexavalent chromium were also systematically examined. The results of scanning electron microscopy analysis indicated that the obtained composites based on Streptomyces were showed a uniform and stable one-dimensional morphology with distinct core–shell configuration. Moreover, the Langmuir isotherm model (R 2 > 0.96) and pseudo-second-order equation (R 2 = 0.9996) described well the equilibrium adsorption behavior and kinetics of hexavalent chromium adsorption by the composites. In addition, bath adsorption experiments demonstrated the highest adsorption capacity of hexavalent chromium by the composites reached 320.03 mg g?1 in an acid solution, which was 5.6 times as that of the pure Streptomyces filaments. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses suggested that the adsorption of hexavalent chromium by the composites possibly involved the protonation, redox, and chelation reactions. Therefore, a promising application of these composites in treating acid hexavalent chromium-contaminated wastewater is expectable.  相似文献   

4.
Acacia nilotica was used for the adsorption of Reactive Black 5 (RB5) dye from an aqueous solution. Both the raw and activated (with H3PO4) carbon forms of Acacia nilotica (RAN and ANAC, respectively) were used for comparison. Various parameters (including dye concentration, contact time, temperature, and pH) were optimized to obtain the maximum adsorption capacity. RAN and ANAC were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The maximum experimental adsorption capacities for RAN and ANAC were 34.79 and 41.01 mg g?1, respectively, which agreed with the maximum adsorption capacities predicted by the Langmuir, Freundlich, and Dubinin–Radushkevich equilibrium isotherm models. The adsorption data of ANAC showed a good fit to the isotherm models based on the coefficient of determination (R 2): Langmuir type II (R 2 = 0.99) > Freundlich (R 2 = 0.9853) > Dubinin–Radushkevich (R 2 = 0.9659). This result suggested monolayer adsorption of RB5 dye. The adsorption of RB5 dye followed pseudo-second-order kinetics. The RAN adsorbent reflected an exothermic reaction (enthalpy change, ΔH = ?0.006 kJ mol?1) and increased randomness (standard entropy change, ΔS = 0.038 kJ mol?1) at the solid–solution interface. In contrast, ANAC reflected both exothermic [?0.011 kJ mol?1 (303–313 K)] and endothermic [0.003 kJ mol?1 (313–323 K)] reactions. However, the ΔS value of ANAC was lower when the RB5 adsorption increased from 313 to 323 K. The negative values for the Gibbs free energy change at all temperatures indicated that the adsorption of RB5 dye onto RAN and ANAC was spontaneous in the forward direction.  相似文献   

5.
The adsorption behavior study of diethyl and dibutyl phthalates was investigated onto a new activated carbon prepared from an abundant biomass “Albizia julibrissin pods,” treated chemically by H3PO4. A series of experiments were conducted in a batch system to estimate the effect of operating conditions such as the adsorbent nature, the dose of adsorbent, the contact time, the initial concentration and the temperature on the adsorption efficiency. The optimum operating conditions were found to be 0.1 and 0.05 g of adsorbent for diethyl and dibutyl phthalates, respectively, at 30 min equilibrium time, 150 mg g?1 and 293 K. The adsorption isotherms for both phthalates were fit at different temperatures using the nonlinear regression of Langmuir, Freundlich, Dubinin–Radushkevich and Redlich–Peterson. The pseudo-first order, pseudo-second order by nonlinear regression and intraparticle diffusion models were used to describe the adsorption kinetic. The results show that the intraparticle diffusion model is not the limiting step governing the adsorption mechanism. The structural and textural characteristics of adsorbent surface were investigated. FTIR analysis of unloaded and phthalates-loaded adsorbent revealed that the aliphatic groups attached to phthalate esters are involved in adsorption mechanism.  相似文献   

6.
The present article explores the ability of five different combinations of two adsorbents (Arachis hypogea shell powder and Eucalyptus cameldulensis saw dust) to remove Pb(II) from synthetic and lead acid batteries wastewater through batch and column mode. The effects of solution pH, adsorbent dose, initial Pb(II) concentration and contact time were investigated with synthetic solutions in batch mode. The Fourier transform infrared spectroscopy study revealed that carboxyl and hydroxyl functional groups were mostly responsible for the removal of Pb(II) ions from test solutions. The kinetic data were found to follow pseudo-second-order model with correlation coefficient of 0.99. Among Freundlich and Langmuir adsorption models, the Langmuir model provided the best fit to the equilibrium data with maximum adsorption capacity of 270.2 mg g?1. Column studies were carried out using lead battery wastewater at different flow rates and bed depths. Two kinetic models, viz. Thomas and Bed depth service time model, were applied to predict the breakthrough curves and breakthrough service time. The Pb(II) uptake capacity (q e = 540.41 mg g?1) was obtained using bed depth of 35 cm and a flow rate of 1.0 mL min?1 at 6.0 pH. The results from this study showed that adsorption capacity of agricultural residues in different combinations is much better than reported by other authors, authenticating that the prepared biosorbents have potential in remediation of Pb-contaminated waters.  相似文献   

7.
A hydrophilic kapok fiber was prepared by a chemical process of the Fenton reaction and used as an adsorbent to remove Pb(II) from aqueous solution. The effects of experimental parameters including pH, contact time, Pb(II) concentration, and coexisting heavy metals were estimated as well as evaluated. The optimum concentrations of FeSO4 and H2O2 for the Fenton reaction-modified kapok fiber (FRKF) were 0.5 mol L?1 and 1 mol L?1, respectively. The adsorption kinetic models and isotherm equations of Langmuir and Freundlich were conducted to identify the most optimum adsorption rate and adsorption capacity of Pb(II) on FRKF. The FRKF displayed an excellent adsorption rate for Pb(II) in single metal solution with the maximum adsorption capacity of 94.41?±?7.56 mg g?1 at pH 6.0. Moreover, the FRKE still maintained its adsorption advantage of Pb(II) in the mixed metal solution. The FRKF exhibited a considerable potential in removal of metal content in wastewater streams.  相似文献   

8.
The development of a fast, effective, simple and low-cost procedure for chromium speciation is an analytical challenge. In this work, a new and simple method for speciation and determination of chromium species in different matrices was developed. Sepia pharaonis endoskeleton nano-powder was used as an adsorbent for the dispersive micro-solid-phase extraction. Finally, the desorbed chromium was determined using a graphite furnace atomic absorption spectrometer. The experimental results showed that Cr(III) could be quantitatively extracted by the adsorbent, while Cr(VI) adsorption was negligible. Concentrated H2SO4 and ethanol reduced Cr(VI)–Cr(III), and total chromium content was assessed as Cr(III). Then, the Cr(VI) concentration in the sample was calculated as the difference. The optimum conditions were obtained in terms of pH, adsorbent amount, contact time, and type, concentration and volume of eluent. Under the optimum conditions that involved the speciation of chromium ions from 25 mL of the water samples at pH 7.0 using 0.025 g of the adsorbent with contact time of 5 min, the method was validated in terms of linearity, precision and accuracy. The calibration curve was linear over the concentration range of 0.01–25.00 μg L?1 for Cr(III). The obtained limit of detection for the proposed method was 0.003 µg L?1. The maximum adsorption capacity of the adsorbent was found to be 995.57 mg g?1. The proposed method was validated by the speciation of Cr(III) and Cr(VI) in different real water and wastewater samples with satisfactory results.  相似文献   

9.
Peganum harmala seeds were assessed as biosorbent for removing Pb2+, Zn2+and Cd2+ ions from aqueous solutions. The effects of various parameters such as the aqueous solution pH, the contact time, the initial metal concentration and the amount of adsorbent in the process were investigated. The adsorption efficiencies increased with pH. It was found that about 95 % of lead, 75 % of zinc and 90 % of cadmium ions could be removed from 45 ml of aqueous solution containing 20 mg l?1 of each cation with 2 g of adsorbent at pH 4.5 after 15 min. The quantitative desorption of cadmium from adsorbent surface was achieved using 10 ml of a 0.5 M nitric acid solution. This condition was attained for lead and zinc ions with 10 ml of 1 M hydrochloric acid solution. Kinetic investigation of the process was performed by considering a pseudo-second-order model. This model predicts the chemisorption mechanism of the process. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were tested for describing the equilibrium data. It was found that the Freundlich model describes the experimental data resulting from the adsorption of lead ions. However for cadmium and zinc ions, the adsorption equilibria were interpreted with the Langmuir model.  相似文献   

10.
In this study, nickel ions adsorption from zinc ingot factory wastewater by brown algae (Sargassum glaucescens) and chitosan/polyvinyl alcohol nano-fiber membrane at continuous system was studied. The continuous process included a biosorption reactor and fixed-bed reactor that were optimized by predicting two batch steps with response surface modeling, based on the Box–Behnken in the novel approach. Nano-biosorbent characterized by scanning electron microscopy, Brunauer–Emmett–Teller and Fourier transform infrared spectrometer analysis. Maximum biosorption in this continuous system was at pH 6, biosorbent doses 8 g L?1 S. glaucescens and 0.48 g L?1 nano-fiber. The study of the reaction rate showed kinetic data best fitted by pseudo-first-order model with R 2 > 0.95 than pseudo-second-order and intraparticle diffusion models. Biosorption equilibrium data were performed using Langmuir isotherm and Freundlich isotherm, Langmuir isotherm fit better with equilibrium data.  相似文献   

11.
The aim of this study was to evaluate the biosorption capacity of selected strains of microscopic fungi. We optimized the biosorption process and used the Freundlich isotherm for three strains: H. haematococca BwIII43, K37 and T. harzianum BsIII33 to describe the biosorption equilibrium of anthraquinone dye, Alizarin Blue Black B (ABBB) and alkali lignin (AL). In optimal conditions (1 g of mycelium biomass, pH = 7.0, 28 °C) for ABBB and AL sorption, the live biomass of H. haematococca BwIII43 was characterized by a higher sorption capacity, amounting to 247.47 and 161.00 mg g?1, respectively. The highest sorption properties toward anthraquinone dye (K F = 19.96 mg g?1) were shown for the biomass of H. haematococca K37. In the presence of alkali lignin, the highest sorption capacity and bond strength exhibited the biomass of H. haematococca BwIII43 (K F = 28.20 mg g?1, n = 3.46). Effective decolorization of ABBB and AL by the selected strains of microscopic fungi indicated that the biosorption process additionally enhanced the removal of color compounds from the solution.  相似文献   

12.
In this work, the effectiveness of native and chemically modified rice bran to remove heavy metal Pb(II) ions from aqueous solution was examined. Chemical modifications with some simple and low-cost chemicals resulted in enhancement of the adsorption capacities and had faster kinetics than native rice bran. Experiments were conducted in shake flasks to monitor the upshot of parameters over a range of pH, initial Pb(II) concentrations and contact times using a batch model study. The sorption capacities q (mg g?1) increased in the following order: NaOH (147.78), Ca(OH)2 (139.08), Al(OH)3 (127.24), esterification (124.28), NaHCO3 (118.08), methylation (118.88), Na2CO3 (117.12) and native (80.24). The utmost uptake capacity q (mg g?1) was shown by NaOH-pretreated rice bran. The results showed that, using NaOH-modified rice bran, the chief removal of Pb(II) was 74.54 % at pH 5, primary Pb(II) concentration 100 mg L?1 and contact time 240 min. Equilibrium isotherms for the Pb(II) adsorption were analyzed by Langmuir and Freundlich isotherm models. The Langmuir isotherm model, showing Pb(II) sorption as accessible through the high value of the correlation coefficient (R 2 = 0.993), showed a q max value of 416.61 mg g?1. The kinetic model illustrated adsorption rates well, depicted by a second order, which gives an indication concerning the rate-limiting step. Thermodynamic evaluation of the metal ion ?G o was carried out and led to the observation that the adsorption reaction is spontaneous and endothermic in nature. NaOH chemically modified rice bran was a superb biosorbent for exclusion of Pb(II) and proved to be excellent for industrial applications.  相似文献   

13.
The adsorption capacity of raw and sodium hydroxide-treated pine cone powder in the removal of methylene blue (MB) from aqueous solution was investigated in a batch system. It was found that the base modified pine cone exhibits large adsorption capacity compared with raw pine cone. The extent of adsorption capacity was increased with the increase in NaOH concentration. Overall, the extent of MB dye adsorption increased with increase in initial dye concentration, contact time, and solution pH but decreased with increase in salt concentration and temperature for both the systems. Surface characteristics of pine cone and base modified pine cone were investigated using Fourier transform infrared spectrophotometer and scanning electron microscope. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was found to be 129.87 mg g?1 at solution pH of 9.02 for an initial dye concentration of 10 ppm by raw pine cone. The base modified pine cone showed the higher monolayer adsorption capacity of 142.25 mg g?1 compared with raw pine cone biomass. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. The various kinetic models, such as pseudo-first-order model, pseudo-second-order model, intraparticle diffusion model, double-exponential model, and liquid film diffusion model, were used to describe the kinetic and mechanism of adsorption process. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on other models. The different kinetic parameters, including rate constant, half-adsorption time and diffusion coefficient, were determined at different physicochemical conditions. A single-stage bath adsorber design for the MB adsorption onto pine cone and modified pine cone has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters, such as standard Gibbs free energy (ΔG 0), standard enthalpy (ΔH 0) and standard entropy (ΔS 0), were also calculated.  相似文献   

14.
In the present study, a novel porous carbon obtained by K2CO3 activation of potato peel waste under optimized conditions was applied for the first time as liquid-phase adsorbent of sodium diclofenac in parallel with a commercial activated carbon. The biomass-activated carbon presented an apparent surface area of 866 m2 g?1 and well-developed microporous structure with a large amount of ultramicropores. The obtained carbon presented leaching and ecotoxicological properties compatible with its safe application to aqueous medium. Kinetic data of laboratory-made and commercial sample were best fitted by the pseudo-second-order model. The commercial carbon presented higher uptake of diclofenac, but the biomass carbon presented the higher adsorption rate which was associated with its higher hydrophilic nature which favoured external mass transfer. Both adsorbents presented adsorption isotherms that were best fitted by Langmuir model. The biomass carbon and the commercial carbon presented adsorption monolayer capacities of 69 and 146 mg g?1, and Langmuir constants of 0.38 and 1.02 L mg?1, respectively. The better performance of the commercial sample was related to its slightly higher micropore volume, but the most remarkable effect was the competition of water molecules in the biomass carbon.  相似文献   

15.
In this research, ordered mesoporous silica, including MCM-41, was synthesized via sol–gel process and a propyl methacrylate-modified ordered mesoporous silica (MPS-MCM-41) was successfully synthesized via a postsynthesis grafting process. Then both MCM-41 and MPS-MCM-41 were characterized using FTIR, XRD, SEM and BET techniques. The synthesized materials were utilized as adsorbent for removal of diazinon pesticide from aqueous solutions. The effects of pH, contact time, adsorbent dose, initial concentration and temperature have been evaluated using removal efficiencies. Also, the kinetic, thermodynamic and isotherm models of diazinon adsorption were studied for the both MCM-41 and MPS-MCM-41. The results showed that the maximum adsorption capacities are 142 and 254 mg g?1 for the MCM-41 and MPS-MCM-41, respectively, at the initial concentration of 50 mg L?1, temperature of 298 K and adsorbent dose of 0.1 g L?1. The highest percentages of diazinon removal are 56.4 and 87.2 (at adsorbent dose of 2 g L?1 and the temperature of 318 K) for the MCM-41 and MPS-MCM-41, respectively. The Freundlich and Langmuir models are more compatible for describing equilibrium data of the diazinon adsorption capacity on the MCM-41 and MPS-MCM-41, respectively. Thermodynamic study indicated that the adsorption process of diazinon onto MCM-41 and MPS-MCM-41 is exothermic and has a spontaneous nature. The higher adsorption capacity and higher spontaneous nature of MPS-MCM-41 in comparison with MCM-41 might be due to the presence of the both hydrogen bonding and hydrophobic interaction between surface functional groups of MPS-MCM-41 (hydroxyl and propyl methacrylate) and diazinon functional groups.  相似文献   

16.
Bimetallic Fe/Ni nanoparticles were synthesized and used for the removal of profenofos organophosphorus pesticide from aqueous solution. These novel bimetallic nanoparticles (Fe/Ni) were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The effect of the parameters of initial pesticide concentration, pH of the solution, adsorbent dosage, temperature, and contact time on adsorption was investigated. The adsorbent exhibited high efficiency for profenofos adsorption, and equilibrium was achieved in 8 min. The Langmuir, Freundlich, and Temkin isotherm models were used to determine equilibrium. The Langmuir model showed the best fit with the experimental data (R 2 = 0.9988). Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were tested to determine absorption kinetics. The pseudo-second-order model provided the best correlation with the results (R 2 = 0.99936). The changes in the thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy of the adsorption process were also evaluated. Thermodynamic parameters indicate that profenofos adsorption using Fe/Ni nanoparticles is a spontaneous and endothermic process. The value of the activation energy (E a = 109.57 kJ/mol) confirms the nature of the chemisorption of profenofos onto Fe/Ni adsorbent.  相似文献   

17.
This paper evaluates the potential use of a fine-grained soil obtained from a site in West Bengal, India, as a suitable landfill liner material for the containment of hexavalent chromium from tanning waste sludge. The physico-chemical properties of the soil were determined. The soil adsorption affinity for hexavalent chromium was also assessed through adsorption batch and breakthrough column tests. The zero point charge (pHzpc) of the soil was found to be 7.3. The batch kinetics and column tests results indicated that the soil liner possesses a relatively good hexavalent chromium adsorption capacity at natural or slightly alkaline condition. The adsorption results showed that the hexavalent chromium uptake by the soil follows both Langmuir and Freundlich adsorption isotherms. This study also illustrated that the hexavalent chromium breakthrough curve in the column experiment reached equilibrium concentration after 3.5 pore volumes (900 h). Overall, this study showed that the fine-grained soil has the potential for usage as a landfill liner or as a component of a landfill barrier system to prevent chromium contamination from the tannery waste disposal.  相似文献   

18.
Pb-contaminated water is a dangerous threat occurring near metallurgic and mining industries. This circumstance produces serious environment concern, due to Pb(II) high toxic effects. Several reactive materials have been reported for Pb(II) adsorption, but not all reached final Pb(II) suitable concentrations, or they are expensive and rejected in massive remediation technologies; hence, natural materials are good options. The adsorption behavior of a volcanic scoria (two sieved fractions 1425 and <425 µm) was studied toward synthetic Pb(II) water solutions in batch experiments (170.4–912.3 mg L?1) with high removal efficiencies (97%). The Langmuir model fits both fractions with high linear correlation coefficients (0.9988 and 0.9949) with high maximum capacity values (588.23 and 555.55 mg g?1). Separation factor R L parameter varies with initial concentration, and the empirical equation predicts the limits of the material usefulness, a criterion proposed in this paper for conditions’ selection. The Lagergren pseudo-second-order analysis demonstrates chemisorption; calculated rate constant (416.66 mg g?1 min?1). Weber–Morris intraparticle model proves that the adsorption phenomena occur fast on the material surface (k inst = 72 g mg?1 min?0.5). The characterization of the volcanic material afforded the elemental composition (X-ray fluorescence), and the empirical formula was proposed. X-ray diffraction patterns verify the material structure as basalt, with a plagioclase structure that matches anorthite and albite, mostly composed of quartz. The presence of oxides on the material surface explain the high Pb(II) adsorption capacity, observed on the surface by scanning electronic microscopy. The studied volcanic scoria has potential use as a Pb(II) adsorbent in water remediation technologies.  相似文献   

19.
Three chromium-resistant bacteria Bacillus pumilus-S4, Pseudomonas doudoroffii-S5 and Exiguobacterium-S8 were isolated from chromium-contaminated wastewater/soil and could resist very high concentrations of potassium chromate in Luria agar (up to 25 mg ml?1) and acetate minimal medium (2 mg ml?1). The strains showed growth at diverse pH and temperatures and could resist multiple heavy metals. Pseudomonas doudoroffii-S5 reduced (8.27 mg hexavalent chromium 24 h?1) at a lower initial potassium chromate concentration (100 μg ml?1), but overall more chromate (28.4 mg hexavalent chromium 24 h?1) was reduced at a higher initial concentration (1,000 μg ml?1). The addition of various heavy metals (zinc sulphate, copper sulphate, and manganese sulphate at 50 μg ml?1) in the chromium reduction media did not significantly affect the hexavalent chromium reduction potential of these isolates. The chromium removal/detoxification potential of these strains increased when used in conjunction with hydrophytes Eichornia crassipes and Pistia stratiotes. Interestingly, the whole process runs automatically with less energy input, that is, the bacterial strains support the growth of plant while in turn the plant releases exudates that help bacterial growth.  相似文献   

20.
Hexavalent chromium has been proved to be the reason of several health hazards. This study aimed at evaluating the application of pomegranate seeds powder for chromium adsorption (VI) from aqueous solution. Chromium adsorption percentage (VI) increased with increasing the adsorbent dosage. Chromium adsorption capacity (VI), at pH = 2 and 10 mg/L initial metal concentration, decreased from 3.313 to 1.6 mg/g through increasing dosage of adsorbent from 0.2 to 0.6 g/100 ml. The adsorption rate increased through increase in chromium initial concentration (VI). However, there was a removal percentage reduction of chromium (VI). Chromium adsorption kinetics by different models (pseudo-first-order, modified pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, Boyd kinetic) was investigated as well. Studies on adsorption kinetic indicated that the experimental data were matched by pseudo-second-order model (R 2 = 0.999) better. Obtained results demonstrated the pomegranate seeds can be used as an effective biomaterial and biosorbent for hexavalent chromium adsorption from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号