首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
X-ray computed tomographic studies of relatively pure Paleoproterozoic limestones from the George Formation, Muskwa Assemblage, northern British Columbia, Canada indicate that molar-tooth structures developed along linked fractures in gel-like semi-plastic carbonate mud, with a high organic content. Where pore fluid and/or gas pressures matched confining loads, MT blobs developed. Where pressure exceeded loads, cracks propagated into adjacent semi-elastic sediment and were rapidly filled by clusters of uniform, equant, microcrystalline carbonate. Where abundant carbonate was not precipitated, incipient cracks and sheets collapsed leaving residual trains of microcrystalline carbonate with similar density to the molar-tooth carbonate. Tomographic studies show that the density of calcite domains within petrographically uniform sheets of MT void-filling calcite is uneven, suggesting that precipitation was not instantaneous, but was propagated from discrete centres.

It is here suggested that carbonate production and sediment rheology were both strongly influenced by organic matter. During early sea-floor diagenesis microcrystalline carbonate precipitated within organic-rich sediment with high water content, possibly within decomposing mats of microbial extracellular polymeric substances (EPS). When pore pressures in the host sediment increased in response to cyclic loading by long-period waves, pore fluids containing EPS were injected into newly created fractures, allowing rapid precipitation of molar-tooth carbonate. Because tomographic studies allow detailed resolution of minor density differences, they provide a useful method of evaluating structures in relatively uniform carbonate rocks of any age.  相似文献   


2.
Molar tooth (MT) structures are enigmatic, contorted millimetre‐ to decimetre‐long veins and spheroids of microcrystalline calcite that formed during very early diagenesis in Precambrian sediments. MT structures in the ca 2·6 Ga Monteville Formation are 600–800 Myr older than previously reported occurrences and establish that conditions necessary for MT genesis were met locally throughout much of the Precambrian. In the Monteville Formation, MT structures were formed shallow subtidally, extending to depths near storm wave base, in shale host sediments intercalated with storm‐generated carbonate sand lenses. They are filled with microcrystalline calcite and rare pyrite. Microcrystalline calcite identical to that in MT structures fills other pore space, including porosity between grains in carbonate sand lenses, moldic porosity in sand grains, sheet cracks in columnar stromatolites, and shallow cracks on sandy bedding planes. Relationships in the Monteville Formation demonstrate that microcrystalline CaCO3 precipitated in fluid‐filled cracks and pores; microcrystalline calcite characteristics, as well as the paucity of carbonate mud in host rocks, are inconsistent with injection of lime mud as the origin of MT structures. Locally, MT cracks were filled by detrital sediment before or during precipitation. Precipitation occurred in stages, and MT CaCO3 evolved from granular cores to a rigid mass of cores with overgrowths – allowing both plastic and brittle deformation of MT structures, as well as reworking of eroded MT structures as rigid clasts and lime mud. Crystal size distributions and morphology suggest that cores precipitated through nucleation, Ostwald ripening and size‐dependent crystal growth, whereas overgrowths formed during size‐independent crystal growth.  相似文献   

3.
Basaltic boulders dredged from the Mid-Atlantic Ridge contain lithified coccolith-foraminiferal ooze in fractures and small pockets. Textural and isotopic studies of this sediment provide no evidence for high temperature metamorphism. The lithified carbonate sediment occurs together with palagonitized basaltic glass and zeolitic tuff, and appears to have been squeezed into cracks and other voids within the congealed margins of partly-cooled basalt pillows which intruded soft carbonate ooze. Thermal metamorphism probably was precluded by rapid heat dissipation in convecting pore waters and by the thermal stability of calcareous microplankton. Low temperature alteration of basaltic glass appears to have provided the chemical milieu for precipitation of calcite cement as well as zeolites in the sediment.  相似文献   

4.
徐州—淮南地区新元古代臼齿碳酸盐岩成因探讨   总被引:8,自引:2,他引:8  
臼齿碳酸盐岩是一种发育在中—新元古代,由微亮晶方解石组成的复杂褶皱构造,其成因一百多年来一直是个谜。通过对徐州-淮南地区新元古代臼齿碳酸盐岩特征、形成环境、分布时限研究,探讨了臼齿碳酸盐岩成因。该区臼齿碳酸盐岩发育在台地缓坡沉积体系中,可作为潮下浅水环境的标志,其形态在微层序中的分布反映沉积环境,具有重要的环境意义。建立了臼齿碳酸盐岩微相环境模式。快速石化作用形成均匀、等粒微亮晶方解石,是臼齿碳酸盐岩显著特征。现代类似于发育臼齿碳酸盐岩潮下环境没有这样的快速石化条件,它要求更高的超过饱和CaCO3沉淀。臼齿碳酸盐岩在本区分布时限介于850~720Ma间,在Sturtian冰期之前消失,与全球其他地区臼齿碳酸盐岩消失的时限一致,Sturtian冰期改变了海洋化学性质,是臼齿碳酸盐岩消失的根本原因。Sturtian冰期对海洋化学性质的影响,可能是揭开臼齿碳酸盐岩成因机理的一个重要新途径。  相似文献   

5.
Molar-tooth (MT) structure is an enigmatic sedimentary structure consisting of variously-shaped cracks and voids filled with a characteristically uniform, equant calcite microspar. It is globally distributed but temporally restricted to rocks from Neoarchean to Neoproterozoic age. The origin of MT structures has been debated for more than a century and the topic continues to be highly contentious. Some features of MT structure occurring in micritic limestones of the Mesoproterozoic Gaoyuzhuang Formation (ca. 1500 Ma to ca. 1400 Ma), Jixian section, Tianjin City, North China show that: 1) there is a definite interface or lining, rich in organic material and pyrite, between the MT crack-filling calcite microspar and the micritic host rock, which is also rich in organic matter; 2) the micritic host rocks are notable for the absence of stromatolites and microbial laminites; 3) distinctive conglomeratic lag deposits made up of intraclasts of MT microspar result from storm reworking of the MT structures; 4) the MT structure is associated with possible algal megafossils such as Chuaria; 5) the MT microspar is made up of the larger calcite crystal and the MT crack is marked by the diversity of configurations; 6) both the TOC content and the carbon-isotopic value (δ13CPDB) among the host rock, the MT microspar and the possible algae fossil are obviously different. For the forming mechanism of the Gaoyuzhuang MT structure, these features can still indicate that: A) the MT microspar was formed by rapid precipitation and lithification; B) the MT microspar precipitated directly within the cracks; C) the decomposition of organic matter within the host micrite might be the chief mechanism producing gas bubbles; D) microscale gas-sediment interaction led to the generation of the MT cracks and the precipitation of microspar therein; E) the MT cracks might represent the track of migration and expansion of gas bubbles, and that the recrystallization of host micrites cannot be eliminated during forming process of the MT microspar; F) the MT structure is occurred in early diagenetic period; and G) the formation of MT microspars is a complex diagenetic process. Therefore, model of the microbially-induced gas-bubble expansion and migration is the best interpretation for the formation of the MT structure. Effectively, MT structures are a type of sedimentary structure that is formed in the early diagenetic period and is related to microbial activities and organic matter degradation.  相似文献   

6.
Molar-tooth structures are intricately crumpled, microsparry calcite fissure fills that formed during the Precambrian. Strontium isotope stratigraphy constrains the last occurrence of volumetrically significant molar-tooth structure (MT) in the geological record to ∼ 750 Ma. Although the disappearance of MT is commonly ascribed to the influence of metazoans on sediment cohesion, this now seems less plausible because there is no evidence for significant sediment disruption by metazoans before ∼ 550 Ma. It is proposed here that the most likely alternative explanation for MT disappearance is a change in ocean chemistry. A decrease in CaCO3 saturation and/or an increase in the concentration of precipitation inhibitors in mid-Neoproterozoic seawater may have contributed to MT disappearance, and might also help to explain the approximately contemporaneous decline in stromatolite diversity.  相似文献   

7.
Sedimentological, morphological, and geochemical characteristics of molar tooth (MT) structures in the ca 2·6 Ga Monteville Formation suggest a new fluid flow model for MT formation: (i) intercalated shales and carbonate sands were deposited near to above storm wave base; (ii) sediments cracked, forming an interconnected network of MT cracks that were also open to pores in sand lenses; (iii) storm waves pumped sea water into open MT crack networks, causing rapid microcrystalline carbonate nucleation, Ostwald ripening of nuclei, and growth of granular carbonate cores; some of these cores were transported by water flowing through the cracks; (iv) unfilled MT cracks collapsed, and filled MT ribbons deformed plastically as host sediments compacted and dewatered; (v) carbonate cores were overgrown by polygonal rims; and (vi) MT structures deformed brittlely with additional compaction and produced pebbly lags if reworked. MT cracks may have formed by multiple mechanisms; however, expansion of gas from organic decay and sediment heaving due to wave loading best explain MT crack morphology and are most consistent with the fluid flow model for MT CaCO3 presented here.  相似文献   

8.
The morphology and geochemistry of pedogenic carbonate found in vertic claystone palaeosols in the Devonian Catskill Formation in central Pennsylvania preserve a record of the physical and chemical environment of carbonate precipitation. The carbonate is characterized by three distinct petrographic generations. Pedogenic rhizoliths and nodules are the earliest precipitated generation, and typically consist of dull red-brown luminescent micrite. Clear, equant calcite spar cement fills voids in the centres of rhizoliths, as well as circumgranular cracks and septarian voids in nodules. Early spar cements are non-luminescent to dull luminescent, whereas later spar cements exhibit bright yellow-orange luminescence. Late stage pedogenic fractures are always occluded with very bright yellow-orange luminescent spar cements. The incorporation of progressively higher concentrations of Mn (up to 34000 ppm) into successively younger calcite spar cements, without concomitant increases in Fe, suggests carbonate precipitation from an evolving meteoric water in which Mn2+ became increasingly mobile over time. The increased mobility is possibly due to decreasing Eh, resulting from oxidation of organic matter after rapid soil burial on the floodplain. The amount of Fe2+ available for incorporation into calcite was limited because most iron was immobile, having been earlier oxidized and bound to the palaeosol clay matrix as a poorly crystallized ferric oxide or oxyhydroxide mineral. Carbon isotope compositions of pedogenic carbonate correlate with the inferred depth of carbonate precipitation. Rhizoliths preserved below the lowest stratigraphic occurrences of pedogenic slickensides are consistently depleted in 13C relative to nodules, which formed stratigraphically higher, within the zone of active soil shrink and swell processes. Nodular carbonate, precipitated in proximity to deep cracks in the soil, is enriched due to increased gas exchange with isotopically heavy atmospheric CO2. Accordingly, rhizolith compositions will most accurately estimate palaeoatmospheric levels of CO2; the use of nodule compositions may result in overestimation of PCO2 by as much as 30%.  相似文献   

9.
A recently discovered dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia, dated at 624 ± 3 Ma, contains xenoliths of calcite-bearing dolomite carbonatite with graphite spherulites. Apatite and aegirine are the other rock-forming minerals. Chemically the carbonatites are ferrocarbonatite and ferruginous calciocarbonatite. The graphite forms <1 mm up to 1.5 mm diameter spherulites, with Raman spectra similar to published spectra of microcrystalline, amorphous carbon and disordered graphite, with G and D bands at 1,580−1,600 cm−1 and at around 1,350 cm−1. Alteration has formed Fe-bearing calcite to Ca-bearing siderite compositions not previously reported in nature around the graphite along cracks and fractures. Mineral and stable isotope geothermometers and melt inclusion measurements for the carbonatite all give temperatures of 700°–900°. It is concluded that the graphite precipitated from the ferrocarbonatite magma. There are three candidates to control the precipitation of graphite (a) a redox reaction with FeII in the magma, (b) potential presence of organics in the magma (c) seeding of, or dissolution in, the magma of graphite/diamond from the mantle, and further work is required to identify the most important mechanism(s). Graphite in carbonatite is rare, with no substantial published accounts since the 1960s but graphite at other localities seems also to have precipitated from carbonatite magma. The precipitation of reduced carbon from carbonatite provides further evidence that diamond formation in carbonate melts at high mantle pressures is feasible.  相似文献   

10.
Sumner DY  Grotzinger JP 《Geology》1996,24(2):119-122
Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.  相似文献   

11.
An amorphous or nanocrystalline calcium carbonate (ACC) phase with aragonite-like short-range order was found to be a transient precursor phase of calcite precipitation mediated by cyanobacteria of the strain Synechococcus leopoliensis PCC 7942. Using scanning transmission X-ray microscopy (STXM), different Ca-species such as calcite, aragonite-like CaCO3, and Ca adsorbed on extracellular polymers were discriminated and mapped, together with various organic compounds, at the 30 nm-scale. The nucleation of the amorphous aragonite-like CaCO3 was found to take place within the tightly bound extracellular polymeric substances (EPS) produced by the cyanobacteria very close to the cell wall. The aragonite-like CaCO3 is a type of ACC since it did not show either X-ray or electron diffraction peaks. The amount of aragonite-like CaCO3 precipitated in the EPS was dependent on the nutrient supply during bacterial growth. Higher nutrient concentrations (both N and P) during the cultivation of the cyanobacteria resulted in higher amounts of precipitation of the aragonite-like CaCO3, whereas the amount of Ca2+ adsorbed per volume of EPS was almost independent of the nutrient level. After the onset of the precipitation of the thermodynamically stable calcite and loss of supersaturation the aragonite-like CaCO3 dissolved whereas Ca2+ remained sorbed to the EPS albeit at lower concentrations. Based on these observations a model describing the temporal and spatial evolution of calcite nucleation on the surface of S. leopoliensis was developed. In another set of STXM experiments the amount of aragonite-like CaCO3 precipitated on the cell surface was found to depend on the culture growth phase: cells in the exponential growth phase adsorbed large amounts of Ca within the EPS and mediated nucleation of ACC, while cells at the stationary/death phase neither adsorbed large amounts of Ca2+ nor mediated the formation of aragonite-like CaCO3. It is suggested that precipitation of an X-ray amorphous CaCO3 layer by cyanobacteria could serve as a protection mechanism against uncontrolled precipitation of a thermodynamically stable phase calcite on their surface.  相似文献   

12.
滇中地区大龙口组微亮晶(臼齿)碳酸盐岩研究   总被引:1,自引:0,他引:1  
运用多种技术方法,如电子探针、扫描电镜、电子显微镜等,对滇中地区大龙口组中的微亮晶碳酸盐岩进行了宏观、微观、成岩作用和成因分析。研究表明,大龙口组中的微亮晶以3种形式存在于底基质中:呈散乱的微亮晶颗粒分散于底基质中,呈等粒微亮晶集合体分布于臼齿构造条带内,或呈鲕粒、内碎屑或藻团块的胶结物形式存在。臼齿构造内部的微亮晶并不是完全致密状排列的,晶间有石膏充填,电子探针分析结果表明其含有Ca、Si、Al、Ti,为晚期成岩阶段晶间水中析出的产物。藻叠层石与臼齿构造出现共生的现象表明,臼齿构造可能与藻类存在某种成因联系,微亮晶集合体作为藻屑或鲕粒的胶结物出现,显示高能动荡水体中生物化学作用和水动力化学作用的结果。文中同时解释了中间宽、两端尖细的臼齿构造的成因,分叉的次级臼齿构造是应力降低的结果,受岩石的非均质性和各向异性的影响。对臼齿构造的成因分析表明,母岩中的有机质被埋藏后经细菌分解产生生物气造成局部高压环境,当超过临界压力时岩石就破裂产生裂隙,而后裂隙中充填的溶液快速结晶成岩,使压力转移而在另一部位聚集高压,然后重复上一过程,从而使岩石中出现密集的臼齿构造,直到与围岩压力平衡为止。  相似文献   

13.
Environmentally friendly options for restoring limestone using microorganisms have attracted recent attention. The governing principle of this technique is to use the metabolism of microorganisms to precipitate carbonate in the gaps of mineral particles; this process is known as microbial carbonate precipitation (MCP). Here, an outcrop associated with MCP under natural conditions at the Giza cliff in Okinawa, Japan was investigated. Colonies of photoautotrophic microorganisms containing chlorophyll were found inhabiting a layer of limestone 2–4 mm below the surface of the outcrop. These microorganisms survived and photosynthesised within the limestone under favorable conditions that include an effective photon flux density of 15–75 µmol/m2/s, and some fresh calcium carbonates (i.e., calcite) were precipitated around the cell walls and extracellular polymeric substances (EPS) of the microorganisms. Furthermore, the results of powder X-ray diffraction (XRD) suggest that the synthetic calcite within the limestone may improve the mechanical strength of the outcrop. These in situ and laboratory findings indicate that these microbial functions may be applicable to some weathered rock surfaces as a self-organizing surface protection and conservation technology.  相似文献   

14.
The precipitation of calcite and aragonite as encrustations directly on the seafloor was an important platform‐building process during deposition of the 2560–2520 Ma Campbellrand‐Malmani carbonate platform, South Africa. Aragonite fans and fibrous coatings are common in unrestricted, shallow subtidal to intertidal facies. They are also present in restricted facies, but are absent from deep subtidal facies. Decimetre‐thick fibrous calcite encrustations are present to abundant in all depositional environments except the deepest slope and basinal facies. The proportion of the rock composed of carbonate that precipitated as encrustations or in primary voids ranges from 0% to > 65% depending on the facies. Subtidal facies commonly contain 20–35%in situ precipitated carbonate, demonstrating that Neoarchaean sea water was supersaturated with respect to aragonite, carbonate crystal growth rates were rapid compared with sediment influx rates, and the dynamics of carbonate precipitation were different from those in younger carbonate platforms. The abundance of aragonite pseudomorphs suggests that sea‐water pH was neutral to alkaline, whereas the paucity of micrite suggests the presence of inhibitors to calcite and aragonite nucleation in the mixed zone of the oceans.  相似文献   

15.
In general, aragonite exists as a metastable carbonate mineral under near-surface conditions, and is commonly transformed into calcite under the subsurface and during diagenesis. It is thus seldom found in sedimentary rocks, but aragonite is common in the Paleogene lacustrine shales in the Jiyang Depression in eastern China. Dissolution experiments were conducted on the Paleogene aragonite-enriched and calcite-enriched shales at different temperatures, pressures and acetic acid concentrations, and in different types of solution. The results show that aragonite is insoluble in the in situ formation water but dissolved more readily under acetic acid conditions than calcite with the degree of dissolution increasing with increasing temperature, pressure and acetic acid concentrations. During the shallow burial diagenesis of the Paleogene sediment sequence in the Jiyang Depression, aragonite was relatively stable and was not dissolved by the connate pore water in the shales. Increasing burial (temperature) and maturity of the organic matter produced large amounts of organic acids that accelerated the dissolution of aragonite. In the late stage, as the organic matter became over-matured, the pore water changed from acidic to alkaline, and calcite precipitated from the carbonate-rich solution. Therefore, the conditions provided by organic acids enabled the conversion of aragonite to calcite during sedimentary diagenesis in the Paleogene lacustrine shales in the Jiyang Depression. This transformation corresponded to the thermal evolution of the organic matter within the shale sequence.  相似文献   

16.
徐淮地区上元古界臼齿构造碳酸盐岩事件   总被引:1,自引:0,他引:1  
臼齿构造是一种发育在中—上元古界中的特殊类型的沉积构造,具有特定的时限。在对徐淮地区上元古界臼齿构造碳酸盐岩旋回层序、岩石学特征和臼齿构造形成环境研究的基础上,探讨了臼齿构造碳酸盐岩的成因。采用旋回层序、海平面变化及臼齿构造碳酸盐岩事件的综合分析方法,划分了徐淮地区上元古界臼齿构造发育的地层层序。臼齿构造主要出现在泥晶灰岩中,而在粗颗粒灰岩中则很少出现,臼齿构造与基质碳酸盐岩在组分和结构上有明显不同,臼齿构造是由纯净的微亮晶方解石组成,而基质则是由含粘土和细粉砂的泥晶碳酸盐岩组成,二者呈突变接触关系。对臼齿构造在层序中相序分布关系的详细研究表明,臼齿构造具有重要的环境意义,从台地内缓坡下部、中缓坡到外缓坡上部均有分布,但在不同环境中臼齿构造的类型不同。  相似文献   

17.
High-magnesium calcite overgrowths were precipitated on Iceland spar calcite crystals buried in Bahamian sediments. Their composition was within the range of carbonate cements in this area. The precipitation rate of the overgrowths was slower and the magnesium content higher than predicted from laboratory experiments, possibly due to adsorption of organic compounds.  相似文献   

18.
Septarian concretions occur at several horizons within the Oxford Clay Formation, a marine mudstone containing pristine aragonite and immature biomarker molecules. They record the passage of at least four generations of pore fluids, the first of marine origin and the last still present in cavities. Concretion bodies formed, cracked, and calcite and pyrite precipitated in and around the cracks within the sulphate reduction zone, as demonstrated by C, O, S and Sr isotopic composition (Pore fluid 1). Before major compaction, sandstone dykes were intruded locally, and baryte precipitated, followed by coarse calcite cements with isotopically light oxygen and radiogenic strontium, indicating the introduction of meteoric-derived water (Pore fluid 2). Later, coarse celestine within concretions has distinct sulphur-isotopic composition and requires a further, geographically restricted, water source (Pore fluid 3). Celestine-bearing concretions contain water in tight cavities whose isotopic composition is close to that of modern precipitation. Its chemistry shows that it is equilibrating with pre-existing minerals implying a relatively recent origin (Pore fluid 4). The mineralogy of the Oxford Clay concretions shows that complex results can follow from a simple burial and uplift history, and that multiple generations of pore fluids can pass through a low-permeability clay.  相似文献   

19.
Oil seeps from the southern Gulf of Mexico can be regarded as natural laboratories where the effect of crude oil seepage on chemosynthesis‐based communities and carbonate precipitation can be studied. During R/V Meteor cruise 114 the seep sites UNAM (Universidad Nacional Autónoma de México) Ridge, Mictlan Knoll and Tsanyao Yang Knoll (Bay of Campeche, southern Gulf of Mexico) were investigated and sampled for authigenic carbonate deposits containing large amounts of liquid oil and solid asphalt. The δ13C values of individual carbonate phases including: (i) microcrystalline matrix aragonite and calcite; (ii) grey, cryptocrystalline to microcrystalline aragonite; and (iii) clear, fibrous aragonite cement, are between ?30‰ and ?20‰, agreeing with oil as the primary carbon source. Raman spectra reveal that residual heavy oils from all sites are immature and most likely originate from the same reservoir. Geochemical batch modelling using the software code PHREEQC demonstrates how sulphate‐driven oxidation of oil‐derived low‐molecular to high‐molecular weight hydrocarbons affects carbonate saturation state, and shows that the oxidation state of carbon in hydrocarbon compounds and oxidation rates of hydrocarbons control carbonate saturation and precipitation at oil seeps. Phase‐specific trace and rare earth element contents of microcrystalline aragonite and calcite, grey cryptocrystalline aragonite and clear aragonite were determined, revealing enrichment in light rare earth elements for grey aragonite. By comparing trace element patterns of carbonates with those of associated oils, it becomes apparent that liquid hydrocarbons constitute an additional source of trace metals to sedimentary pore waters. This work not only demonstrates that the microbial degradation of oil at seeps may result in the precipitation of carbonate minerals, it also elucidates that trace metal inventories of seep carbonates archive diagnostic elemental patterns, which can be assigned to the presence of heavy hydrocarbons in interstitial pore waters.  相似文献   

20.
Septarian concretions in the Staffin Shales Formation (Kimmeridgian, Isle of Skye) allow controls on concretion rheology and septarian cracking to be investigated. Stratabound concretions consist of anhedral ferroan calcite microspar enclosing clay and minor pyrite. Intergranular volumes range from 77% to 88%, and calcite δ13C and δ18O values in most concretion bodies range from ?10·0‰ to ?17·3‰ and +0·3‰ to ?0·6‰ respectively, consistent with rapid and pervasive cementation in marine pore fluids. Septarian rupture occurred during incipient cementation, with a sediment volume reduction of up to 43%. Crack‐lining brown fibrous calcite records pore fluid re‐oxygenation during a depositional hiatus, followed by increasing Fe content and δ13C related to bacterial methanogenesis. Brown colouration results from an included gel‐like polar organic fraction that probably represents bacterially degraded biomass. A new hypothesis for concretion growth and septarian cracking argues that quasi‐rigid ‘proto‐concretions’ formed via binding of flocculated clays by bacterial extracellular polysaccharide substances (EPS). This provided rheological and chemical conditions for tensional failure, subcritical crack growth, volume contraction, calcite nucleation, and incorporation of degraded products into crack‐lining cements. Bacterial decay of EPS and syneresis of host muds provided internal stresses to initiate rupture at shallow burial. Development of septarian (shrinkage) cracks in muds is envisaged to require pervasive in situ bacterial colonization, and to depend on rates of carbonate precipitation versus EPS degradation and syneresis. Subsequent modification of septarian concretions included envelopment by siderite and calcite microspar, hydraulic fracturing associated with Cretaceous shallow burial or Palaeogene uplift; and cementation by strongly ferroan, yellow sparry calcite that records meteoric water invasion of the host mudrocks. An abundance of fatty acids in these spars indicates aqueous transport of organic breakdown products, and δ13C data suggest a predominantly methanogenic bicarbonate source. However, the wide δ18O range for petrographically identical cement (?1·3‰ to ?15·6‰) is difficult to explain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号