首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

2.
The regularities of the variations in the IMF B z component have been studied based on the data on the solar wind streams and their solar sources. Isolated solar wind streams such as magnetic clouds and shock layers before them, undisturbed heliospheric current sheets (HCSs), leading edges and bodies of high-speed streams from coronal holes (HSSs from CHs) have been considered. It has been revealed that each type of isolated streams in the interplanetary medium has it own features in the variations in the value and direction of the B z component related to the stream immanent properties and conditions of propagation in the interplanetary plasma. The appearance of the southward B z component is obligatory for all these streams which are, therefore, geoeffective.  相似文献   

3.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

4.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

5.
Geomagnetic pulsation in the Pc3-4 bands have been studied at high Antarctic latitudes during the local summer. The statistical relation between the occurrence probability of Pc3 and Pc4 pulsations and the solar wind (SW) and IMF parameters has been revealed by verifying the hypothesis that an indication is identical in two distributions. Different dependences of the occurrence probability of high-latitude Pc3 and Pc4 pulsations on the IMF value and orientation and SW density and velocity have been found out. It has been indicated that these dependences remain unchanged in the range of geomagnetic latitudes from 66° to 87°. It has been established that the Pc3 observation probability at small (20°–50°) IMF cone angles (θ = cos?1(B x/|B|)) is a factor of 1.5 higher than the average statistical probability and depends on the IMF value, which confirms the hypothesis that the Pc3 source is the turbulent region upstream of the magnetospheric quasiparallel low shock. On the contrary, the probability of occurrence of Pc4 weakly depends on the IMF cone angle and is maximal at θ ~ 0° and ~90°. With increasing negative B z values, the generation probability increases in the Pc4 band and tends to decrease in the Pc3 band. It has been found out for the first time that the dependence of the Pc4 occurrence probability on the IMF clock angle (? = tan?2 (B/B z) is identical in the regions of projections of closed and open field lines, whereas this dependence is different for Pc3. In the region of projections of closed field lines, the Pc3 occurrence probability increases at B z < 0 and B y > 0 (the condition under which the cusp shifts on the dawn side) and at B y < 0 and B z > 0 (which is typical of the formation of the low-latitude boundary plasma sheet). In the region of projections of open field lines such a probability increases at B y < 0 and B z < 0 (which results in the formation of the high-latitude boundary plasma sheet). Based on the discovered regularities, the conclusion has been made that the sources of generation of high-latitude Pc3 and Pc4 pulsations are different.  相似文献   

6.
Uncertainties in some key parameters in land surface models severely restrict the improvement of model capacity for successful simulation of surface-atmosphere interaction. These key parameters are related to soil moisture and heat transfer and physical processes in the vegetation canopy as well as other important aerodynamic processes. In the present study, measurements of surface-atmosphere interaction at two observation stations that are located in the typical semi-arid region of China, Tongyu Station in Jilin Province and Yuzhong Station in Gansu Province, are combined with the planetary boundary layer theory to estimate the value of two key aerodynamic parameters, i.e., surface roughness length z0m and excess resistance κB-1. Multiple parameterization schemes have been used in the study to obtain values for surface roughness length and excess resistance κB-1 at the two stations. Results indicate that z0m has distinct seasonal and inter-annual variability. For the type of surface with low-height vegetation, there is a large difference between the default value of z0m in the land surface model and that obtained from this study. κB-1 demonstrates a significant diurnal variation and seasonal variability. Using the modified scheme for the estimation of z0m and κB-1 in the land surface model, it is found that simulations of sensible heat flux over the semi-arid region have been greatly improved. These results suggest that it is necessary to further evaluate the default values of various parameters used in land surface models based on field measurements. The approach to combine field measurements with atmospheric boundary layer theory to retrieve realistic values for key parameters in land surface models presents a great potential in the improvement of modeling studies of surface-atmosphere interaction.  相似文献   

7.
The problem of estimating the time derivatives of the horizontal components of the geomagnetic field and forecasting the probability of the occurrence of perturbations that exceed a given threshold level (the over-threshold perturbations) arises in the applications concerned with the geomagnetically induced currents (GICs). In this work, we consider the temporal and spatial structure of the Pi3 pulsations with quasi-periods of 102 to 103 s during which the auroral and subauroral stations of the IMAGE network record over-threshold values in the derivatives of the meridional (along the longitudinal circle) BX component and latitudinal (along the latitudinal circle) BY component. The extreme |dBX/dt| values mainly develop against the background of the Pi3 pulsations with a complex frequency content, whereas the extreme |dBY/dt| values appear when the buildup (decay) phases of the bay-like disturbance associated with the evolution of a substorm coincide with the respective phases of the field of pulsations. The conditions under which the derivatives |dBX/dt| and |dBY/dt| reach their over-threshold values are studied for subauroral latitudes by the technique of superposed epoch analysis. The extreme values of the derivatives most frequently occur during the main phase of moderate magnetic storms or beyond the storm—during high substorm activity under the conditions of a negative vertical component of the interplanetary magnetic field. The probability of the occurrence of over-threshold values increases at high amplitudes of the Pi3 pulsations and depends on their spectral content. The problem of analyzing and forecasting the over-threshold |dBY/dt| perturbations is complicated by the fact that the scale of the perturbations is small along the lines of latitude and large along the meridians. This can result in GIC excitation in the North–South oriented electric power lines by the geomagnetic perturbations localized within a narrow band in longitude which can be missed during the measurements.  相似文献   

8.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

9.
Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly “pressed” against the star surface, and the plasma frequency is much lower than the electron gyrofrequency (fL ? fB) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition fL ? fB, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.  相似文献   

10.
Monthly indices of Southern Atmospheric Oscillation (SOI) and corresponding Wolf numbers, geoeffective solar flares, magnetic AE indices as well as daily average values of the southward component of the interplanetary magnetic field (IMF B z) and data on the wind characteristics at Antarctic stations Vostok, Leningradskaya, and Russkaya are analyzed. It is shown that a sharp decrease in the SOI indices, which corresponds to the beginning of El Nin’o (ENSO), is preceded one or two months before by a 20% increase in the monthly average Wolf numbers. In warm years of Southern Atmospheric Oscillation a linear relationship is observed between the SOI indices and the number of geoeffective solar flares with correlation coefficients p < ?0.5. It is shown that in warm years a change in the general direction of the surface wind to anomalous at the above stations is preceded one or two days before by an increase in the daily average values of IMF B z. An increase in the SOI indices is preceded one or two months before by a considerable increase in the monthly average values of the magnetic AE indices.  相似文献   

11.
Simultaneous observations of high-latitude long-period irregular pulsations at frequencies of 2.0–6.0 mHz (ipcl) and magnetic field disturbances in the solar wind plasma at low geomagnetic activity (Kp ~ 0) have been studied. The 1-s data on the magnetic field registration at Godhavn (GDH) high-latitude observatory and the 1-min data on the solar wind plasma and IMF parameters for 2011–2013 were used in an analysis. Ipcl (irregular pulsations continuous, long), which were observed against a background of the IMF Bz reorientation from northward to southward, have been analyzed. In this case other solar wind plasma and IMF parameters, such as velocity V, density n, solar wind dynamic pressure P = ρV2 (ρ is plasma density), and strength magnitude B, were relatively stable. The effect of the IMF Bz variation rate on the ipcl spectral composition and intensity has been studied. It was established that the ipcl spectral density reaches its maximum (~10–20 min) after IMF Bz sign reversal in a predominant number of cases. It was detected that the ipcl average frequency (f) is linearly related to the IMF Bz variation rate (ΔBzt). It was shown that the dependence of f on ΔBzt is controlled by the α = arctan(By/Bx) angle value responsible for the MHD discontinuity type at the front boundary of magnetosphere. The results made it possible to assume that the formation of the observed ipcl spectrum, which is related to the IMF Bz reorientation, is caused by solar wind plasma turbulence, which promotes the development of current sheet instability and surface wave amplification at the magnetopause.  相似文献   

12.
The results of studying the Pc4–5 pulsation parameters based on the method of bistatic backscatter of radio waves, using the EISCAT/Heating HF facility (Tromsø, Norway) and IMAGE ground-based magnetometers (Scandinavia), are presented. The observations were performed during the morning hours on October 3, 2006, when a substorm developed on the nightside. An analysis of the observational data obtained from 1000 to 1020 UT indicated that wave-like disturbances with periods corresponding to Pc4–5 pulsations (80–240 s) existed at that time. The variations in the full vector of the ionospheric irregularity motion and the electric field strength in an artificially disturbed high-latitude ionospheric F region has been reconstructed based on simultaneous Doppler observations on two paths. A general conformity is observed among the time variations in Pc4–5 pulsations in the magnetic and ionospheric data: between the velocity amplitude (|V|) and the X component of the Earth’s magnetic field and between the irregularity motion azimuth and the Y component. Large-scale waves, corresponding to the natural resonances of magnetic field lines (small values of the azimuthal number |m| ~ 2–4), and small-scale waves (large values |m| ~ 17–20) were simultaneously registered during the experiment based on magnetic data. It has been indicated that the periods of wave-like processes registered using the method of bistatic backscatter and ground-based magnetometers were in agreement with one another. The formation of wave-like processes is explained by the nonstationary impact of the solar wind and IMF on the Earth’s magnetosphere. The variations in the IMF, according to the ACE satellite measurements, were characterized by a sharp increase in the solar wind plasma dynamic pressure that occurred at about 09 UT on October 3, 2006, and was accompanied by rapid polarity reversals of the north-ward-southward (B z) and transverse (B y) IMF components.  相似文献   

13.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   

14.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

15.
The magnetic properties of the shadow of magnetic-related leading and trailing spots (those connected by forces lines of magnetic field, which are calculated from a field in potential approximation) are studied in this work. The correlations are established between individual characteristics of the field in the spot shadow and these characteristics from the shadow area S for spot pairs, for which the minimum angle between the measured vector of magnetic induction B in the shadow of the leading (L) spot and positive normal to the solar surface is lower than in the trailing (F) spot (αmin-L < αmin-F) and, vice versa, when αmin-L > αmin-F. It is shown that the αmin-L(SL), αmin-F(SF), Bmax-L(SL) and Bmax-F(SF) correlations are similar behaviorally and quantitatively for two groups of spots with different asymmetries of a magnetically connected field (Bmax-L, F is the maximum of magnetic induction in the shadow of leading and trailing spots). The correlation between the average angles within the spot shadow 〈αL, F〉 and the area of the spot shadow SL, F and between the average value of magnetic induction in the spot shadow 〈BL, F〉 differ in two cases. In most studied spot pairs, the leading spot is closer to the dividing line of polarity between the spots rather than the trailing one.  相似文献   

16.
Parameters of the interplanetary magnetic field and solar wind plasma during periods of 163 isolated substorms have been studied. It is shown that the solar wind velocity V and plasma density N remain approximately constant for at least 3 h before substorm onset Т o and 1 h after Т o . On average, the velocity of the solar wind exhibits a stable trend toward anticorrelation with its density over the whole data array. However, the situation is different if the values of V and N are considered with respect to the intensity of substorms observed during that period. With the growth of substorm intensity, quantified as the maximum absolute value of AL index, an increase in both the solar wind plasma velocity and density, at which these substorms appear, is obsreved. It has been found that the magnitude of the solar wind dynamic pressure P is closely related to the magnetosphere energy load defined as averaged values of the Kan–Lee electric field EKL and Newell parameter dΦ/dt averaged for 1 h interval before Т o . The growth of the dynamic pressure is accompanied by an increase in the load energy necessary for substorm generation. This interrelation between P and values of EKL and dΦ/dt is absent in other, arbitrarily chosen periods. It is believed that the processes accompanying increasing dynamic pressure of the solar wind result in the formation of magnetosphere conditions that increasingly impede substorm generation. Thus, the larger is P, the more solar wind energy must enter the Earth’s magnetosphere during the period of the growth phase for substorm generation. This energy is later released during the period of the substorm expansion phase and creates even more intense magnetic bays.  相似文献   

17.
Temporal variations of the maximum (B max) and average (〈B〉) magnetic inductions, minimum (α min) and average (〈α〉) inclination angles of the field lines to the radial direction from the center of the Sun, and areas of the sunspot umbra S in the umbra of single sunspots during their passage across the solar disk are investigated. The variation of the properties of single sunspots has been considered at different stages of their existence, i.e., during formation, the “quiet” period, and the disappearance stage. It has been found that, for the majority of the selected single sunspots, there is a positive correlation between B max and S and between 〈B〉 and S defined at different times during the passage of sunspots across the solar disk. It is shown in this case that the nature of the dependence between the parameters α min and B max, α min and S, as well as between 〈α〉 and 〈B〉, 〈α〉 and S, can vary from sunspot to sunspot, but for many sunspots the inclination angle of the field lines decreases on average with the growth of the sunspot umbra area and the field strength.  相似文献   

18.
The influence of scattering of accelerated electrons in the turbulent plasma on the transformation of their distribution function is studied. The turbulence is connected with the emergence of magnetic inhomogeneities and ion-sound mode. The level of ion-sound turbulence is specified by the ratio W s/nk B T e = 10?3, while the value of magnetic fluctuations is δB/B = 10–3. Different initial angular distributions of the function of accelerated-electron source are regarded: from isotropic to narrow directional distributions. For the chosen energy-density values of the ion-sound turbulence and the level of magnetic fluctuations, it is shown that both types of turbulence lead to a qualitative change in the hard X-ray brightness along the loop, moreover their influence was found to be different. Models with magnetic fluctuations and the ion sound can be distinguished not only by the difference in the hard X-ray distribution along the loop but also by the photon spectrum.  相似文献   

19.
Solutions of P-SV equations of motion in a homogeneous transversely isotropic elastic layer contain a factor exp(±ν j z), where z is the vertical coordinate and j?=?1, 2. For computing Rayleigh wave dispersion in a multi-layered half space, ν j is computed at each layer. For a given phase velocity (c), ν j becomes complex depending on the transversely isotropic parameters. When ν j is complex, classical Rayleigh waves do not exist and generalised Rayleigh waves propagate along a path inclined to the interface. We use transversely isotropic parameters as α H , β V , ξ, ? and η and find their limits beyond which ν j becomes complex. It is seen that ν j depends on ? and η, but does not depend on ξ. The complex ν j occurs when ? is small and η is large. For a given c/β V , the region of complex ν j in a ? -η plane increases with the increase of α H /β V . Further, for a given α H /β V , the complex region of ν j increases significantly with the decrease of c/β V . This study is useful to compute dispersion parameters of Rayleigh waves in a layered medium.  相似文献   

20.
Earth’s bow shock is the result of interaction between the supersonic solar wind and Earth’s magnetopause. However, data limitations mean the model of the shape and position of the bow shock are based largely on near-Earth satellite data. The model of the bow shock in the distant magnetotail and other factors that affect the bow shock, such as the interplanetary magnetic field (IMF) By, remain unclear. Here, based on the bow shock crossings of ARTEMIS from January 2011 to January 2015, new coefficients of the tail-flaring angle α of the Chao model (one of the most accurate models currently available) were obtained by fitting data from the middle-distance magnetotail (near-lunar orbit, geocentric distance -20RE>X>-50RE). In addition, the effects of the IMF By on the flaring angle α were analyzed. Our results showed that: (1) the new fitting coefficients of the Chao model in the middle-distance magnetotail are more consistent with the observed results; (2) the tail-flaring angle α of the bow shock increases as the absolute value of the IMF By increases. Moreover, positive IMF By has a greater effect than negative IMF By on flaring angle. These results provide a reference for bow shock modeling that includes the IMF By.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号