首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the observations in six pairs of almost conjugate high-latitude stations in the Arctic and Antarctic regions, the spectral and spatial-temporal structures of long-period geomagnetic pulsations (f = 2–5 mHz) during the magnetic storm of April 16–17, 1999, which is characterized by a high (up to 20 nPa) solar wind dynamic pressure, have been studied. It has been indicated that the magnetic storm sudden commencement is accompanied by a symmetrical excitation of np pulsations near the dayside polar cusps with close amplitudes. Under the conditions when IMF B z > 0 and B y < 0, strong magnetic field variations with the periods longer than 15–20 min were observed only in the northern polar cap. When IMF B z and B y became close to zero, geomagnetic pulsation bursts in both hemispheres were registered simultaneously but differed in the spectral composition and spatial distribution. In the Northern Hemisphere, pulsations were as a rule observed in a more extensive latitude region than in the Southern Hemisphere. In the Northern Hemisphere, the oscillation amplitude maximum was observed at higher latitudes than in the Southern Hemisphere. The pulsation amplitude at geomagnetic latitude lower than 74° was larger in the Arctic Regions than in the Antarctic Regions. This can be explained by sharply different geographic longitudes in the polar cap and latitudes in the auroral zone, which results in a different ionospheric conductivity affecting the amplitude of geomagnetic pulsations.  相似文献   

2.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

3.
A very strong magnetic storm of May 15, 2005, was caused by an interplanetary magnetic cloud that approached the Earths’ orbit. The sheath region of this cloud was characterized by a high solar wind density (~25–30 cm?3) and velocity (~850 km/s) and strong variations (to ~20 nT) in the interplanetary magnetic field (IMF). It has been indicated that an atypical bay-like geomagnetic disturbance was observed during the initial phase of this storm in a large longitudinal region at high latitudes: from the morning to evening sectors of the geomagnetic local time. Increasing in amplitude, the magnetic bay rapidly propagated to the polar cap latitudes up to the geomagnetic pole. An analysis of the global space-temporal dynamics of geomagnetic pulsations in the frequency band 1–6 mHz indicated that most intense oscillations were observed in the morning sector in the region of the equivalent ionospheric current at latitudes of about 72°–76°. The wavelet structure of magnetic pulsations in the polar cap and fluctuations in IMF was generally similar to the maximum at frequencies lower than 4 mHz. This can indicate that waves directly penetrated into the polar cap from the solar wind.  相似文献   

4.
The effects of the dayside and dusk plumes of the plasmasphere during the ring current recovery phase on the disturbance level of the ground geomagnetic field horizontal component have been considered. It has been indicated that the geomagnetic field horizontal component changes specifically and synchronously in the region corresponding to the plasmaspheric dayside plume. Outside the plume the time variations in the geomagnetic field horizontal component pronouncedly differs. A spectral analysis of disturbances in the geomagnetic field horizontal components in the range of geomagnetic pulsations indicated that the intensity in the range of Pc4 pulsations increases at magnetic stations located on field lines corresponding to the dayside and dusk plumes of the plasmasphere. These pulsations detected in the dynamic spectrum of the geomagnetic field horizontal components in the dayside plume region of the plasmasphere, probably reflect the resonance oscillations of magnetic field lines in the region of field-aligned currents at comparatively low altitudes. We assume that this is caused by the instability of field-aligned currents originating as a result of the interaction between the ring current energetic ions and electromagnetic waves in the region with a relatively dense background plasma of the dayside plume.  相似文献   

5.
A thorough investigation of short-period oscillations in the Earth’s magnetic field as a fundamental natural process of the magnetospheric plasma began in Russia after V.A. Troitskaya established two oscillatory regimes in the geomagnetic field, namely, the regimes of continuous (Pc) and irregular pulsations (Pi). For studying these pulsations, 19 stations recording the telluric currents were installed during the International Geophysical Year (IGY, 1957–1959) on Troitskaya’s initiative. One of these stations was the Borok station. Subsequently, Borok has become the basic site for investigating geomagnetic pulsations and the main center for studying the short-period pulsations (SPPs) in the Earth’s magnetic field. This is the Borok scientific station where the key fundamental regularities of different types of geomagnetic pulsations were established. Troitskaya led and actively participated these works. Troitskaya organized and conducted the first complex geomagnetic observations in the world at the conjugate points Sogra (Arkhangelsk region, Russia) and Kerguelen (Indian Ocean). These studies were initially tested at the Borok observatory, where it was established that the wave packets of Pc1 geomagnetic pulsations are alternately observed in the northern and southern hemispheres in contrast to the other pulsation types which simultaneously occur in both hemispheres. The studies carried out at Borok promoted the establishment of a new direction in geophysics—diagnostics of the state of the magnetosphere based on the ground observations of geomagnetic pulsations. The analysis of simultaneous observations of the geomagnetic pulsations at polar latitudes of the Arctic and Antarctic was also for the first time conducted at the Borok observatory. This analysis revealed the main characteristics of wave phenomena at the geomagnetic poles and in the vicinity of the projection of the dayside polar cusp. Thus, for the first time in the world, Troitskaya and her Borok colleagues established the key patterns of the oscillatory regimes in the geomagnetic field of the Earth. This laid the basis for the further experimental and theoretical investigations which have shown that SPPs play a leading role in the dynamics of the magnetospheric plasma. In this paper we also list of 60 of Troitskaya’s main publications.  相似文献   

6.
The features of daytime high-latitude geomagnetic variations and geomagnetic pulsations in the Рс5 range during the recent, large, two-stage magnetic storm of September 7–8, 2017 are studied. The discussed disturbances were observed at the recovery phase of the first stage of the storm after the interplanetary magnetic field (IMF) turned northward. It is shown that the large sign-alternating variations in Ву and Bz components of the IMF caused intense geomagnetic disturbances up to 300–400 nT with a quasi-period of ~20 min in the daytime sector of polar latitudes, probably in the region of the daytime polar cusp. These disturbances may have reflected quasi-period motions of the daytime magnetopause and may have resulted from nonlinear transformation of the variations in the interplanaterary magnetic field in the magnetosheath or in the magnetospheric entry layers. The appearance of high-latitude long-period variations was accompanied by the excitation of bursts (wave packets) of geomagnetic Pc5 pulsations. The onset of Pc5 pulsation bursts often coincided with a sudden northward turn of the IMF. It was discovered for the first time that the development of a “daytime polar substorm,” i.e., a negative magnetic bay in the daytime sector of polar latitudes, led to a sudden termination of the generation of geomagnetic Pc5 pulsations over the entire latitude range in which these oscillations were recorded before the appearance of the daytime bay.  相似文献   

7.
The 11-year solar cycle effect in the geomagnetic components H and Z is made clear for Surlari Observatory and 19 repeat stations for the interval 1952–1974. The correlation with Wolf number and its time derivative is discussed in terms of the effects of the external and induced current systems.The H? data available for solar cycle 20 (1964–1976) were processed to give the geographical distribution of the secular variation impulse for epoch 1969.5 in Romania. It is suggested that this distribution might reflect the deep internal structure of the area considered.A qualitative correlation is noted between long-period solar activity and variation of the horizontal component of the geomagnetic field at some repeat stations.  相似文献   

8.
An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay) and a low latitude (L’Aquila, Italy) station during the Earth’s passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz) and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth’s magnetosphere.  相似文献   

9.
地磁钩扰的全球响应特征研究与初步统计结果   总被引:3,自引:0,他引:3       下载免费PDF全文
地磁钩扰是太阳耀斑效应的直观表现之一,其研究有助于深入理解太阳爆发对地球空间环境的影响过程,并能为空间天气建模和预报提供科学依据.本文利用山东大学威海地磁台和Intermagnet地磁链与子午工程的地磁观测数据,联合GOES卫星及数字测高仪等的数据,研究了一个由M5.6级太阳耀斑引发的地磁钩扰事件的全球响应特征.研究发现:地磁钩扰特征呈现出南北半球与午前/午后的差异,且地磁响应相对于太阳耀斑存在约3 min的滞后现象,而夜侧无明显扰动;利用位于日侧的50余个地磁台站的数据统计分析后发现地磁钩扰幅度呈现正态分布,且在当地时正午附近达到峰值;利用地磁数据反演出钩扰发生时电离层的电流体系Ss和宁静日电流Sq,并用该电流体系解释了此事件中地磁数据的变化特征.另外,本文初步统计了1996-2015年的地磁钩扰事件数以及相关的太阳耀斑事件数,分析后发现X级耀斑引发地磁钩扰的可能性最大,达42%,由M级耀斑引发的地磁钩扰事件数最多,A、B、C级等小耀斑引发地磁钩扰的可能性很小.  相似文献   

10.
中低纬地区地磁脉动的研究   总被引:1,自引:0,他引:1  
近年来我们对中低纬地区地磁脉动进行了大量的观测和研究。本文不仅介绍了观测仪器的设计、台网设置及数据处理方法。而且还简要地介绍了一些主要科研成果,如低纬Pc3脉动特点,低纬Pi2脉动偏振特性。南极地区的地磁脉动观测结果,以及在磁暴和太阳耀斑期间在低纬地区观测的地磁脉动。这对于进一步认识中低纬地区地磁脉动是十分有益的。  相似文献   

11.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   

12.
This paper is devoted to the morphology of Pc1 geomagnetic pulsations (frequency range 0.2–5.0 Hz). This study is based on the series of continuous observations of Pc1 pulsations during more than three solar cycles (July 1957–December 1995). The main attention is given to the temporal characteristics of Pc1 activity, i.e. daily, seasonal and cyclic variations, and also the relationship of Pc1 activity with magnetic storms, sector structure of the interplanetary magnetic field and parameters of the solar wind. The results may be used in the studies of medicobiologic aspects of the problem of solar–terrestrial relations.  相似文献   

13.
A retrospective analysis of the Russian magnetic observations of the Carrington event that occurred on September 2–3, 1859, has been performed. The conclusion has been made that this event was caused by the series of three recurrent eruptive solar flares during ~40 h. The characteristics of the geomagnetic crochet, related to a considerable flux of the ionizing electromagnetic radiation during this flare, have been studied. The value and direction of a magnetic field disturbance, registered during the maximum of the geomagnetic storm of September 2, unambiguously indicate that all Russian stations were in the auroral oval zone, which was strongly expanded southward from its average position. The disturbance dependence on the station longitude—the absence of magnetometer pinning in Nerchinsk—is interpreted as the possible manifestation of a strong asymmetry in the effective contour of the current system, which was connected to the heliosphere and covered the disturbed magnetosphere and ionosphere during the short period that lasted only 1–3 h.  相似文献   

14.
Changes in the three components of geomagnetic field are reported at the chain of ten geomagnetic observatories in India during an intense solar crochet that occurred at 1311 h 75° EMT on 15 June 1991 and the subsequent sudden commencement (SSC) of geomagnetic storm at 1518h on 17 June 1991. The solar flare effects (SFE) registered on the magnetograms appear to be an augmentation of the ionospheric current system existing at the start time of the flare. An equatorial enhancement in AH due to SFE is observed to be similar in nature to the latitudinal variation of SQ (H) at low latitude. AF registered the largest effect at 3.6° dip latitude at the fringe region of the electrojet. AZ had positive amplitudes at the equatorial stations and negative at stations north of Hyderabad. The SSC amplitude in the H component is fairly constant with latitude, whereas the Z component again showed larger positive excursions at stations within the electrojet belt. These results are discussed in terms of possible currents of internal and external origin. The changes in the Y field strongly support the idea that meridional current at an equatorial electrojet station flows in the ionospheric dynamo, E.Presently at: School of Physics, University of New South Wales, Sydney, Australia  相似文献   

15.
Ground-based geomagnetic Pc5 (2–7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ~ 30–50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called “anomaly rectification” in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth’s magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.  相似文献   

16.
The geomagnetic observations, performed at the global network of ground-based observatories during the recovery phase of the superstrong magnetic storm of July 15–17, 2000 (Bastille Day Event, Dst = ?301 nT), have been analyzed. It has been indicated that magnetic activity did not cease at the beginning of the storm recovery phase but abruptly shifted to polar latitudes. Polar cap substorms were accompanied by the development of intense geomagnetic pulsations in the morning sector of auroral latitudes. In this case oscillations at frequencies of 1–2 and 3–4 mHz were observed at geomagnetic latitudes higher and lower than ~62°, respectively. It has been detected that the spectra of variations in the solar wind dynamic pressure and the amplitude spectra of geomagnetic pulsations on the Earth’s surface were similar. Wave activity unexpectedly appeared in the evening sector of auroral latitudes after the development of near-midnight polar substorms. It has been established that the generation of Pc5 pulsations (in this case at frequencies of 3–4 mHz) was spatially asymmetric about noon during the late stage of the recovery phase of the discussed storm as took place during the recovery phase of the superstrong storms of October and November 2003. Intense oscillations were generated in the morning sector at the auroral latitudes and in the postnoon sector at the subauroral and middle latitudes. The cause of such an asymmetry, typical of the recovery phase of superstrong magnetic storms, remains unknown.  相似文献   

17.
Spatial-temporal and spectral features of ground geomagnetic pulsations in the frequency range of 1–5 mHz at the initial phase of a strong magnetic storm of the 24th cycle of solar activity (August 5–6, 2011, with a Dst-variation in the storm maximum of ?110 nT) are analyzed. Large opposite in sign amplitudes of variations in IMF parameters (from ?20 to +20 nT) at a high velocity of the solar wind (~650 km/s) accompanied by intense bursts in solar-wind density (up to ~50 cm?3) were distinctive feature of interplanetary medium conditions causing the storm. Geomagnetic Pi3 pulsations global in longitude and latitude and in-phase in the middle and equatorial latitudes were found. The onset of pulsation generation was caused by a pulse of dynamic pressure of the solar wind (~20 nPa), i.e., by a considerable compression of the magnetosphere. The maximum (2–3 mHz) in the amplitude spectrum of near-equatorial pulsations coincided with the maximum of pulsations in the daytime polar cap. After the next jump of the dynamic pressure of the solar wind (~35 nPa), an additional maximum appeared in the pulsation spectrum in the frequency band of ~3.5–4.5 mHz. Global pulsations suddenly stopped after a sharp decrease in the solar-wind dynamic pressure and corresponding extension of the magnetosphere. The obtained results are compared with the time dynamics of the position and shape of the plasmapause.  相似文献   

18.
A local approximation method based on piecewise sinusoidal models has been proposed in order to study the frequency and amplitude characteristics of geomagnetic pulsations registered at a network of magnetic observatories. It has been established that synchronous variations in the geomagnetic pulsation frequency in the specified frequency band can be studied with the use of calculations performed according to this method. The method was used to analyze the spectral–time structure of Pc3 geomagnetic pulsations registered at the network of equatorial observatories. Local approximation variants have been formed for single-channel and multichannel cases of estimating the geomagnetic pulsation frequency and amplitude, which made it possible to decrease estimation errors via filtering with moving weighted averaging.  相似文献   

19.
Disturbances in the solar wind density, geomagnetic field, and magnetospheric plasma density and fluxes are analyzed. The disturbances have the same sign and are close to each other in time. They accompany the process of amplitude modulation of Pc1 geomagnetic pulsations during the recovery phase of the moderate magnetic storm of April 10–11, 1997. The magnetospheric disturbances were recorded by ground-based observatories and on spacecraft in all local time sectors with insignificant time delays. It is concluded that in this case variations in the geomagnetic field and magnetospheric plasma density are primary, whereas the amplitude modulation of Pc1, 2 is a secondary manifestation of fast magnetosonic (FMS) waves that are generated during the interaction between the magnetosphere and solar wind density irregularities.  相似文献   

20.
A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V × Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号