首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Icarus》1987,70(1):153-161
Viking XRF analyses of the Martian regolith are compared with typical igneous rocks of the Earth, the Moon, the eucrite parent asteroid, and especially the shergottites, nakhlites, and Chassigny (SNC) meteorites, which are suspected to be basalts and mafic cumulates from Mars. A striking feature of the Martian regolith, compared to igneous rocks with similar molar (Mg + Fe)/Si ratios, is its extraordinarily low Ca/Si ratio. The regolith's low Ca/Si ratio is probably not a result of simple mixing (isochemical weathering) of SNC-like rocks with other igneous rocks, unless the regolith contains a large component of rock with an improbable combination of extremely low Ca/Si and (Mg + Fe)/Si, and yet low K2O and Zr. Several other models might conceivably account for the low Ca/Si ratio, but I suggest that most of the “missing” Ca was removed from the regolith as Ca-carbonate. Formation of a mass of carbonate equivalent to a global shell 20 m thick would suffice to remove 1000 mbar of CO2 from the Martian atmosphere. Thus, the peculiar Ca/Si ratio of the Martian regolith tends to support the hypothesis that the climate of Mars was once far warmer and wetter than it is today.  相似文献   

2.
Martian meteorite Elephant Moraine A79001 (EET 79001) has received considerable attention for the unusual composition of its shock melt glass, particularly its enrichment in sulfur relative to the host shergottite. It has been hypothesized that Martian regolith was incorporated into the melt or, conversely, that the S‐enrichment stems from preferential melting of sulfide minerals in the host rock during shock. We present results from an electron microprobe study of EET 79001 including robust measurements of major and trace elements in the shock melt glass (S, Cl, Ni, Co, V, and Sc) and minerals in the host rock (Ni, Co, and V). We find that both S and major element abundances can be reconciled with previous hypotheses of regolith incorporation and/or excess sulfide melt. However, trace element characteristics of the shock melt glass, particularly Ni and Cl abundances relative to S, cannot be explained either by the incorporation of regolith or sulfide minerals. We therefore propose an alternative hypothesis whereby, prior to shock melting, portions of EET 79001 experienced acid‐sulfate leaching of the mesostasis, possibly groundmass feldspar, and olivine, producing Al‐sulfates that were later incorporated into the shock melt, which then quenched to glass. Such activity in the Martian near‐surface is supported by observations from the Mars Exploration Rovers and laboratory experiments. Our preimpact alteration model, accompanied by the preferential survival of olivine and excess melting of feldspar during impact, explains the measured trace element abundances better than either the regolith incorporation or excess sulfide melting hypothesis does.  相似文献   

3.
The composition of the silicate portion of Martian regolith fines indicates derivation of the fines from mafic to ultramafic igneous rocks, probably rich in pyroxene. Rock types similar in chemical and mineralogical composition include terrestrial Archean basalts and certain achondrite meteorites. If these igneous rocks weathered nearly isochemically, the nontronitic clays proposed earlier as an analog to Martian fines could be formed. Flood basalts of pyroxenitic lavas may be widespread and characteristic of early volcanism on Mars, analogous to maria flood basalts on the Moon and early Precambrian basaltic komatiites on Earth. Compositional differences between lunar, terrestrial, and Martian flood basalts may be related to differences in planetary sizes and mantle compositions of the respective planetary objects.  相似文献   

4.
A large amount of interest has recently been expressed pertaining to the quantity of physically adsorbed water by the Martian regolith. Thermodynamic calculations based on experimentally determined adsorption and desorption isotherms and extrapolated to subzero temperatures indicate that physical adsorption of more than one or two monomolecular layers is highly unlikely under Martian conditions. Any additional water would find ice to be the state of lowest energy and therefore the most stable form. To test the validity of the thermodynamic calculations we have measured adsorption and desorption isotherms of sodium montmorillonite at ?5°C. To a first approximation it was found to be valid.  相似文献   

5.
An isothermal reservoir of carbon dioxide in gaseous contact with the Martian atmosphere would reduce the amplitude and advance the phase of global atmospheric pressure fluctuations caused by seasonal growth and decline of polar CO2 frost caps. Adsorbed carbon dioxide in the upper ~10 m of Martian regolith is sufficient to buffer the present atmosphere on a seasonal basis. Available observations and related polar cap models do not confirm or refute the operation of such a mechanism. Implications for the amplitude and phase of seasonal pressure fluctuations are subject to direct test by the upcoming Viking mission to Mars.  相似文献   

6.
J.P. Manker  A.P. Johnson 《Icarus》1982,51(1):121-132
Outflow channeling and associated chaotic terrain were created under temperature and pressure conditions suggested for a diluvian period on Mars 3.5 to 0.5 by ago. Pressures under which both features were formed ranged from 130 to 34 mbar at a constant ambient temperature of 266°K. Analogs of the collapse structures and channels evolved in a high-altitude/low-temperature chamber are found on the Martian surface. Similarities exist not only in their overall morphology but in the finer details of the megastructures themselves. The critical factor that allowed channelized flow to occur was the sudden release of liquid water derived from melting of subsurface ground ice and ice layers under the low atmospheric pressure and temperature conditions within the chamber. Experimentation may indicate the existence of substantially thick water ice layers beneath the Martian regolith prior to the outflow channeling episode.  相似文献   

7.
Analyses of Martian surface soil by Viking and Earth-based telescopes have been interpreted as indicating a regolith dominated by the weathering products of mafic or ultramafic rocks. Basaltic glass has previously been proposed as a more likely precursor than crystalline rock, given the low efficiency of surface weathering under present Martian conditions. On Earth large volumes of basaltic glass formed by quenching of magma by water. A similar interaction, between magma and ground ice, may have been a common occurrence on Mars. On the basis of this scenario palagonite, the alteration product of basaltic sideromelane glass, was studied as a possible analog to Martian soil. Samples from Iceland, Alaska, Antarctica, Hawaii, and the desert of New Mexico and Mexico were examined by optical and scanning electron microscopy, electron microprobe analysis, X-ray diffraction, spectrophotometry, and magnetic and thermogravimetric analysis. We suggest that palagonite is a good analog to the surface soil of Mars in chemical composition, particle size, spectral signature, and magnetic properties. Our model for the formation of fine-grained Martian surface soil begins with eruptions of basaltic magma through ground ice, forming deposits of glassy tuff. Individual glass shards are then altered by low-temperature hydrothermal systems to palagonitic material. Dehydration and aeolian abrasion strip the alteration rinds from the glass, and wind storms distribute the silt-sized palagonitic fragments in a planet-wide deposit.  相似文献   

8.
Abstract— In the framework of international planetary exploration programs, several space missions are planned to search for organics and bio‐signatures on Mars. Previous attempts have not detected any organic compounds in the Martian regolith. It is therefore critical to investigate the processes that may affect organic molecules on and below the planet's surface. Laboratory simulations can provide useful data about the reaction pathways of organic material at Mars' surface. We have studied the stability of amino acid thin films against ultraviolet (UV) irradiation and use those data to predict the survival time of these compounds on and in the Martian regolith. We show that thin films of glycine and D‐alanine are expected to have half‐lives of 22 ± 5 hr and of 3 ± 1 hr, respectively, when irradiated with Mars‐like UV flux levels. Modelling shows that the half‐lives of the amino acids are extended to the order of 107 years when embedded in regolith. These data suggest that subsurface sampling must be a key component of future missions to Mars dedicated to organic detection.  相似文献   

9.
Abstract— Spectroscopic measurement and analysis of Martian meteorites provide important information about the mineralogy of Mars, as well as necessary ground-truths for deconvolving remote sensing spectra of the Martian surface rocks. The spectroscopic properties of particulate ALH 84001 from 0.3 to 25 μm correctly identify low-Ca pyroxene as the dominant mineralogy. Absorption bands due to electronic transitions of ferrous iron are observed at 0.94 and 1.97 μm that are typical for low-Ca pyroxene. A strong, broad water band is observed near 3 μm that is characteristic of the water band typically associated with pyroxenes. Weaker features near 4.8, 5.2 and 6.2 μm are characteristic of particulate low-Ca pyroxene and can be distinguished readily from the features due to high-Ca pyroxene and other silicate minerals. The reflectance minimum occurs near 8.6 μm for the ALH 84001 powder, which is more consistent with high-Ca pyroxene and augite than low-Ca pyroxene. The dominant mid-infrared (IR) spectral features for the ALH 84001 powder are observed near 9 and 19.5 μm; however, there are multiple features in this region. These mid-IR features are generally characteristic of low-Ca pyroxene but cannot be explained by low-Ca pyroxene alone. Spectral features from 2.5–5 μm are typically associated with water, organics and carbonates and have been studied in spectra of the ALH 84001, split 92 powder and ALH 84001, splits 92 and 271 chip surfaces. Weak features have been identified near 3.5 and 4 μm that are assigned to organic material and carbonates. Another feature is observed at 4.27 μm in many surface spots and in the powder but has not yet been uniquely identified. Spectroscopic identification of minor organic and carbonate components in this probable piece of Mars suggests that detection of small amounts of organics and carbonates in the Martian surface regolith would also be possible using visible-infrared hyperspectral analyses. Laboratory spectroscopic analysis of Martian meteorites provides a unique opportunity to identify the spectral features of minerals and other components while they are embedded in their natural medium.  相似文献   

10.
We examine the response of Martian climate to changes in solar energy deposition caused by variations of the Martian orbit and obliquity. We systematically investigate the seasonal cycles of carbon dioxide, water, and dust to provide a complete picture of the climate for various orbital configurations. We find that at low obliquity (15°) the atmospheric pressure will fall below 1 mbar; dust storms will cease; thick permanent CO2 caps will form; the regolith will release CO2; and H2O polar ice sheets will develop as the permafrost boundaries move poleward. At high obliquity (35°) the annual average polar temperature will increase by about 10°K, slightly desorbing the polar regolith and causing the atmospheric pressure to increase by not more than 10 to 20 mbar. Summer polar ground temperatures as high as 273°K will occur. Water ice caps will be unstable and may disappear as the equilibrium permafrost boundary moves equatorward. However, at high eccentricity, polar ice sheets will be favored at one pole over the other. At high obliquity dust storms may occur during summers in both hemispheres, independent of the eccentricity cycle. Eccentricity and longitude of perihelion are most significant at modest obliquity (25°). At high eccentricity and when the longitude of perihelion is close to the location of solstice hemispherical asymmetry in dust-storm generation and in polar ice extent and albedo will occur.The systematic examination of the relation of climate and planetary orbit provides a new theory for the formation of the polar laminae. The terraced structure of the polar laminae originates when eccentricity and/or obliquity variations begin to drive water ice off the dusty permanent H2O polar caps. Then a thin (meters) layer of consolidated dust forms on top of a dirty, slightly thicker (tens of meters) ice sheet and the composite is preserved as a layer of laminae composed predominately of water ice. Because of insolation variation on slopes, a series of poleward- and equatorward-facing scarps are formed where the edges of the laminae are exposed. Independently of orbital variations, these scarps propagate poleward both by erosion of the equatorward slopes and by deposition on the poleward slopes. Scarp propagation resurfaces and recycles the laminae forming the distinctive spiral bands of terraces observed and provides a supply of water to form new permanent ice caps. The polar laminae boundary marks the furthest eqautorward extension of the permanent H2O caps as the orbit varies. The polar debris boundary marks the furthest equatorward extension of the annual CO2 caps as the orbit varies.The Martian regolith is now a significant geochemical sink for carbon dioxide. CO2 has been irreversibly removed from the atmosphere by carbonate formation. CO2 has also benn removed by regolith adsorption. Polar temperature increases caused by orbital variations are not great enough  相似文献   

11.
ExoMars is the European Space Agency (ESA) mission to Mars planned for launch in 2018, focusing on exobiology with the primary objective of searching for any traces of extant or extinct carbon-based micro-organisms. The on-surface mission is performed by a near-autonomous mobile robotic vehicle (also referred to as the rover) with a mission design life of 180 sols (Patel et al., 2010). In order to obtain useful data on the tractive performance of the ExoMars rover before flight, it is necessary to perform mobility tests on representative soil simulant materials producing a Martian terrain analogue under terrestrial laboratory conditions. Three individual types of regolith shown to be found extensively on the Martian surface were identified for replication using commercially available terrestrial materials, sourced from UK sites in order to ensure easy supply and reduce lead times for delivery. These materials (also referred to as the Engineering Soil (ES-x) simulants) are: a fine dust analogue (ES-1); a fine aeolian sand analogue (ES-2); and a coarse sand analogue (ES-3). Following a detailed analysis, three fine sand regolith types were identified from commercially available products. Each material was used in its off-the-shelf state, except for ES-2, where further processing methods were used to reduce the particle size range. These materials were tested to determine their physical characteristics, including the particle size distribution, particle density, particle shape (including angularity/sphericity) and moisture content. The results are analysed to allow comparative analysis with existing soil simulants and the published results regarding in situ analysis of Martian soil on previous NASA (National Aeronautics and Space Administration) missions. The findings have shown that in some cases material properties vary significantly from the specifications provided by material suppliers. This has confirmed the need for laboratory testing to determine the actual parameters to prove that standard geotechnical processes are indeed suitable. The outcomes have allowed the confirmation of each simulant material as suitable for replicating their respective regolith types.  相似文献   

12.
The discovery of microbiota in the Dry Valleys of Antarctica has encouraged the construction of new models of Martian ecosystems in order to determine if life could have once existed on Mars. The Antarctic cyanobacteria reside just below the surface of sandstone rocks where they are protected from the extreme cold and dry environment. Analogy with the Antarctic Dry Valleys supports speculation that hypothetical micro-organisms existed on Mars in the early history of the planet and could have migrated into suitable rocks as the availability of liquid water decreased. Although evidence for sandstone layers on Mars has not been substantiated, the palaeohydrology of Martian fluvial valleys (MFVs) reveals the evidence of lake bed sediment depositions which have formed consolidated sediments. As the MFVs formation may result from underground drainage processes, the sediment material would be expected to contain debris such as pumice washload, and pumilith of volcanic and meteoritic origin. These materials may have formed consolidated porous terrains similar to the Antarctic sandstone. Therefore, the endolithic model is consistent with the Martian liquid water habitat model of perenially ice-covered lakes.  相似文献   

13.
F.P. Fanale 《Icarus》1976,28(2):179-202
Observations of Mars and cosmochemical considerations imply that the total inventory of degassed volatiles on Mars is 102 to 103 times that present in Mars' atmosphere and polar caps. The degassed volatiles have been physically and chemically incorporated into a layer of unconsolidated surface rubble (a “megaregolith”) up to 2km thick. Tentative lines of evidence suggest a high concentration (~5g/cm2) of 40 Ar in the atmosphere of Mars. If correct, this would be consistent with a degassing model for Mars in which the Martian “surface” volatile inventory is presumed identical to that of Earth but scaled to Mars' smaller mass and surface area. The implied inventory would be: (40Ar) = 4g/cm2, (H2O) = 1 × 105g/cm2, (CO2) = 7 × 103g/cm2, (N2) = 3 × 102g/cm2, (Cl) = 2 × 103g/cm2, and (S) = 2 × 102g/cm2. Such a model is useful for testing, but differences in composition and planetary energy history may be anticipated between Mars and Earth on theoretical grounds. Also, the model demands huge regolith sinks for the volatiles listed.If the regolith were in physical equilibrium with the atmosphere, as much as 2 × 104g/cm2 of H2O could be stored in it as hard-frozen permafrost, or 5 × 104g/cm2 if equilibrium with the atmosphere were inhibited. Spectral measurements of Martian regolith material and laboratory measurement of weathering kinetics on simulated regolith material suggest large amounts of hydrated iron oxides and clay minerals exist in the regolith; the amount of chemically bound H2O could be from 1 × 104 to 4 × 104g/cm2. In an Earth-analogous model, a 2 km mixed regolith must contain the following concentrations of other volatile-containing compounds by weight: carbonates = 1.5%, nitrates = 0·3%, chlorides = 0.6%, and sulfates = 0.1%. Such concentrations would be undetectable by current Earth-based spectral reflectance measurements, and (except the nitrates) formation of the “required” amounts of these compounds could result from interaction of adsorbed H2O and ice with primary silicates expected on Mars. Most of the CO2 could be physically adsorbed on the regolith.Thus, maximum amounts of H2O and other volatiles which could be stored in the Mars regolith are marginally compatible with those required by an Earth-analogous model, although a lower atmospheric 40Ar concentration and regolith volatile inventory would be easier to reconcile with observational constraints. Differences in the ratios of H2O and other volatiles to 40Ar between surface volatiles on the real Mars and on an Earth-analogous Mars could result from and reflect differences in bulk composition and time history of degassing between Mars and Earth. Models relating Viking-observable parameters, e.g., (40Ar) and (36Ar), to the time history and overall intensity of Mars degassing are given.  相似文献   

14.
Secondary ion mass spectrometry is a powerful analytical tool, which has the potentiality, through molecular ion emission, of detecting minor phases, as well as the unique capability of directly measuring isotope abundances in mineral or organic phases without any prior physical, chemical or thermal processing. Applied to the in situ analysis of the Martian regolith, it can provide evidence of the presence of carbonates and, by inference (if carbonates constitute significant deposits), of past liquid water--a necessary condition for the development of life. In addition, oxygen isotopic composition of carbonates preserves a record of the temperature at which this phase precipitated and may therefore help decipher the past climatology of Mars. Detection of a carbon isotopic composition shift between carbonates and organic matter (on Earth, the result of a kinetic fractionation effect during photosynthesis) would provide a definite clue regarding the existence of a past biochemical activity on Mars.  相似文献   

15.
Abstract— Pyroxene structural data, along with analyses of titanomagnetite, fayalite and mesostasis of the new nakhlite Miller Range (MIL) 03346, define equilibration near 1 bar, 1100 °C, and oxygen fugacity near the FMQ buffer. There is a clear progression of oxygen fugacity (fO2) in Martian meteorites from reduced Allan Hills (ALH) 84001 to intermediate shergottites to oxidized nakhlites. This trend can be explained by polybaric graphite‐CO‐CO2 equilibria in the Martian mantle. Shergottites would have formed at pressures between 1.2 and 3.0 GPa, and nakhlite parent liquids formed at pressures >3.0 GPa, consistent with geochemical and petrologic data for the shergottites and nahklites. Carbon buffering in the Martian mantle could be responsible for variation in fO2 in Martian meteorites (rather than assimilation or crustal interaction), as well as C‐H‐O fluids that could be the source of ˜30 ppb CH4 detected by recent spacecraft missions. The conundrum of an oxidized current mantle and basalts, but reduced early mantle during core‐mantle equilibrium exists for both the Earth and Mars. A polybaric buffering role for graphite can explain this discrepancy for Mars, and thus it may not be necessary to have an oxidation mechanism like the dissociation of MgFe‐perovskite to account for the oxidized terrestrial mantle.  相似文献   

16.
B.W. Denevi  M.S. Robinson 《Icarus》2008,197(1):239-246
Mariner 10 clear filter (490 nm) images of Mercury were recalibrated and photometrically normalized to produce a mosaic of nearly an entire hemisphere of the planet. Albedo contrasts are slightly larger than seen in the lunar highlands (excluding maria). Variegations indicative of compositional differences include diffuse low albedo units often overlain by smooth plains, the high albedo smooth plains of Borealis Planitia, and high-albedo enigmatic crater floor deposits. A higher level of contrast between immature crater ejecta and average mature material on Mercury compared to the Moon is consistent with a more intense space weathering environment on Mercury that results in a more mature regolith. Immature lunar highlands materials are ∼1.5 times higher in reflectance than analogous immature mercurian materials. Immature materials of the same composition would have the same reflectance on both bodies, thus this observation requires that Mercury's crust contains a significant darkening agent, either opaque minerals or ferrous iron bearing silicates, in abundances significantly higher than those of the lunar highlands. If the darkening agent is opaque minerals (e.g. ilmenite or ulvospinel) Mercury's crust may contain significant ferrous iron and yet not exhibit a 1-μm absorption band.  相似文献   

17.
The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle‐derived magmas and the crust. We have measured the Cl‐isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The 37Cl of the Martian mantle, as represented by the olivine‐phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately ?3.8‰. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of 35Cl to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation‐fractional crystallization.  相似文献   

18.
Abstract— We have investigated the native amino acid composition of two analogs of Martian soil, JSC Mars‐1 and Salten Skov. A Mars simulation chamber has been built and used to expose samples of these analogs to temperature and lighting conditions similar to those found at low latitudes on the Martian surface. The effects of the simulated conditions have been examined using high‐performance liquid chromatography (HPLC). Exposure to energetic ultraviolet (UV) light in vacuum appears to cause a modest increase in the concentration of certain amino acids within the materials, which is interpreted as resulting from the degradation of microorganisms. The influence of low temperatures shows that the accretion of condensed water on the soils leads to the destruction of amino acids, supporting the idea that reactive chemical processes involving H2O are at work within the Martian soil. We discuss the influence of UV radiation, low temperatures, and gaseous CO2 on the intrinsic amino acid composition of Martian soil analogs and describe, with the help of a simple model, how these studies fit within the framework of life detection on Mars and the practical tasks of choosing and using Martian regolith analogs in planetary research.  相似文献   

19.
We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl‐rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36–73 ppm H2O and the depleted source has 14–23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust‐mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has ~1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of ~229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.  相似文献   

20.
In order to understand the complex multi-parameter system of destruction of organic material on the surface of Mars, step-by-step laboratory simulations of processes occurring on the surface of Mars are necessary. This paper describes the measured effects of two parameters, a CO2 atmosphere and low temperature, on the destruction rate of amino acids when irradiated with Mars-like ultraviolet light (UV). The results show that the presence of a 7 mbar CO2 atmosphere does not affect the destruction rate of glycine, and that cooling the sample to 210 K (average Mars temperature) lowers the destruction rate by a factor of 7. The decrease in the destruction rate of glycine by cooling the sample is thought to be predominantly caused by the slower reaction kinetics. When these results are scaled to Martian lighting conditions, cold thin films of glycine are assumed to have half-lives of 250 h under noontime peak illumination. It has been hypothesised that the absence of detectable native organic material in the Martian regolith points to the presence of oxidising agents. Some of these agents might form via the interaction of UV with compounds in the atmosphere. Water, although a trace component of Mars’ atmosphere, is suggested to be a significant source of oxidising species. However, gaseous CO2 or adsorbed H2O layers do not influence the photodestruction of amino acids significantly in the absence of reactive soil. Other mechanisms such as chemical processes in the Martian regolith need to be effective for rapid organic destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号