首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract

Four oroclinal structures have been identified from structural, magnetic and gravity trends across a Carboniferous continental arc, forearc basin [Tamworth Belt (TB)] and conjugate accretionary complex in the southern New England Orogen (SNEO) of eastern Australia. None of the structures has yet been confirmed conclusively by paleomagnetism as oroclinal. Ignimbrites are common within the forearc basin and have been demonstrated to retain primary magnetisations despite prevalent overprinting. They are well exposed across six major tectono-stratigraphic blocks with partly interlinked stratigraphies, making the forearc basin highly prospective to oroclinal testing by comparing pole path segments for individual blocks across curved structures. Paleomagnetic studies have shown no noticeable rotation across the western/southwestern TB (Rocky Creek, Werrie and Rouchel blocks), but documented herein is a minor counter-clockwise rotation of the Gresford Block of the southern TB. This study details paleomagnetic, rock magnetic and magnetic fabric results for 87 sites (969 samples) across the southern Gresford Block. Predominantly thermal, also alternating field and liquid nitrogen, demagnetisations show a widely present low-temperature overprint, attributed to regional late Oligocene weathering, and high-temperature primary and overprint components residing in both mainly magnetite and mainly hematite carriers. Subtle, but systematic, directional differences between magnetite and hematite subcomponents show the latter as the better cleaned, better-defined, preferred results, detailing nine primary poles of middle and late Carboniferous ages and Permian and Permo-Triassic overprints as observed elsewhere in the western/southwestern TB. The primary poles update a poorly defined mid-Carboniferous section of the SNEO pole path and demonstrate counter-clockwise rotation, quantified at about 15° ± 13° from comparison of mid-Carboniferous Martins Creek Ignimbrite Member poles for the Rouchel and Gresford blocks, that may not necessarily have been completed prior to the Hunter–Bowen phase of the Gondwanide Orogeny. This minor counter-clockwise rotation of the Gresford Block accentuates a primary curvature of the southwestern/southern TB and heralds further, more complex, rotations of the Myall Block of the southeastern TB.  相似文献   

2.
Palaeomagnetic, rock magnetic and magnetic fabric results are presented for a Carboniferous (Visean to Westphalian) succession of felsic, mainly ignimbritic, volcanic and volcaniclastic rocks from the Rocky Creek Block of the northern Tamworth Belt, southern New England Orogen. Detailed thermal demagnetisation of 734 samples from 64 sites show three groups of magnetic components with low (<300°C), intermediate (300–600°C) and high (500–680°C) unblocking temperature ranges. Well‐defined primary magnetisations have been determined for 28 sites with evidence of four overprint phases. The overprints arise from a mid‐Tertiary weathering event (or possibly recent viscous origin), and from fluid movements associated with the Late Cretaceous opening of the Tasman Sea, thrusting during the Middle Triassic main phase of the Hunter‐Bowen Orogeny, and latest Carboniferous — Early Permian formation of the Bowen‐Gunnedah‐Sydney Basin system. Rock magnetic tests establish that the primary magnetisation carriers in the volcanic rocks are mainly magnetite (predominantly single domain, or pseudo‐single domain, and little or no multidomain) and hematite. Optimal magnetic cleaning is achieved at high to very high temperatures, with subtle, but systematic, directional and statistical differences between primary components derived from the mainly hematite fraction and pseudo‐components derived from the mainly magnetite fraction. The 28 primary magnetisation results are presented as six mean‐site results, summarised below and representing 25 sites, and three single‐site results. Fold tests could be applied to five mean‐site results. These are all positive, but one of these results may represent a secondary magnetisation. The primary magnetisation results define a Visean to Westphalian pole path. This long pole path indi cates extensive latitudinal and rotational movement for the Rocky Creek Block, and potentially for the New England Orogen, as follows: (i) Yuendoo Rhyolite Member (Caroda Formation, Visean) pole 235.8°E, 27.7°S, ED95 = 9.0°, n = 3; (ii) Peri Rhyolite Member/Boomi Rhyolite Member (Clifden Formation, Namurian, 318.0 ± 3.4 Ma) pole 177.4°E, 63.4°S, ED95 = 5.2°, n = 3; (iii) tuffaceous beds above Boomi Rhyolite Member (Clifden Formation?, Namurian) pole 162.2°E, 59.1°S, ED95 = 10.2°, n = 3; ((iv) upper Clifden Formation/lower Rocky Creek Conglomerate (Namurian/Westphalian) pole 95.3°E, 49.6°S, ED95 = 8.1°, n = 3 (possible overprint)); (v) Rocky Creek Conglomerate (Westphalian) pole 136.5°E, 57.6°S, ED95 = 5.3°, n = 5; (vi) Lark Hill Formation (Westphalian) pole 127.0°E, 50.4°S, ED95 = 4.8°, n = 8.  相似文献   

3.

Carboniferous (Visean to Westphalian) pyroclastics and lava flows in the Rocky Creek region, used to redefine the base of the Kiaman reversal, are formally defined or redefined and the status of the main formations clarified. These units include the Caroda Formation, containing the Kooringal Dacite, Boomi Rhyolite and Barney Springs Andesite Members; the Clifden Formation with the Wanganui Andesite, Glen Idle Rhyolite, Appleogue Dacite, Bexley Rhyolite, Pine Cliffs Rhyolite and Downs Rhyodacite Members; Rocky Creek Conglomerate with the Hazelvale Rhyodacite, Mt Hook Rhyolite, Darthula Rhyodacite and Pound Rock Rhyodacite Members; and Lark Hill Formation with the Eulowrie Pyroclastic, Tycannah Rhyodacite and The Tops Rhyolite Members; a number of informal units are also described. The restriction of most volcanic units to one of the three thrust blocks (Boomi, Kathrose and Darthula blocks) of the Rocky Creek region, suggests their current relationships reflect either shortening due to overthrusting or an original distribution affected by depositional or erosional processes. A westerly increase in the proportion of ignimbrites indicates nearness to sources in that direction. Intermediate volcanism, largely confined to southern and central parts of the Boomi block in the east, began in the Visean and ended in the early Namurian. Acid volcanism also began in the Visean in the northern Boomi block but, with the exception of the Peri Rhyolite Member of the Clifden Formation, did not become widespread until later in the Namurian and Westphalian. In contrast, only acid volcanism took place during the early Namurian to Westphalian in the Kathrose and Darthula blocks. Correlations based on AS3 and SL13 SHRIMP dates illustrate a discordance of about 3% when compared with the most likely location for the base of the Kiaman reversal. The bases of both the Rocky Creek Conglomerate and Lark Hill Formation appear to be slightly diachronous.  相似文献   

4.
The southern part of the New England Orogen exhibits a series of remarkable orogenic bends (oroclines), which include the prominent Z-shaped Texas and Coffs Harbour oroclines. The oroclines are defined by the curvature of Devonian–Carboniferous forearc basin and accretionary complex rock units. However, for much of the interpreted length of the Texas Orocline, the forearc basin is mostly concealed by younger strata, and crops out only in the Emu Creek Block in the eastern limb of the orocline. The geology of the Emu Creek Block has hitherto been relatively poorly constrained and is addressed here by presenting new data, including a revised geological map, stratigraphic sections and new detrital zircon U–Pb ages. Rocks of the Emu Creek Block include shallow-marine and deltaic sedimentary successions, corresponding to the Emu Creek and Paddys Flat formations, respectively. New detrital zircon U–Pb data indicate that these formations were deposited during the late Carboniferous and that strata were derived from a magmatic source of Devonian to Carboniferous age. The sedimentary provenance and detrital zircon age distribution suggest that the sequence was deposited in a forearc basin setting. We propose that the Emu Creek and Paddys Flat formations are arc-distal, along-strike correlatives of the northern Tamworth Belt, which is part of the forearc basin in the western limb of the Texas Orocline. These results confirm the suggestion that Devonian–Carboniferous forearc basin rocks surround the Texas Orocline and have been subjected to oroclinal bending.  相似文献   

5.
New and published paleomagnetic measurements from Trans Altai and South Gobi zones in south Mongolia document large tectonic motions in between Late Carboniferous and Triassic. Magnetic inclinations confirm equatorial position of south Mongolian terranes in Late Carboniferous–Permian times. The evolution of magnetic declinations indicates 90° anticlockwise rotation in between latest Carboniferous and Early Triassic of all studied tectonic units around the Eulerian pole located close to axis of Mongolian orocline. The anticlockwise rotation continues in Triassic being accompanied by a major drift to the north. The structural and published geochronological data suggest Carboniferous E–W shortening of the whole region resulting in N–S trend of all continental and oceanic geological units followed by orthogonal N–S shortening during Late Permian to Early Jurassic. Both paleomagnetic and geological data converge in a tectonic model of oroclinal bending of Mongolian ribbon continent, westerly back arc oceanic domain and Mongol–Okhotsk subduction zone to the east. The oroclinal bending model is consistent with the coincidence of the Eulerian pole of rotation with the structural axis of Mongolian orocline. In addition, the Mesozoic collisional tectonics is reflected by late remagnetizations due to formation of wide deformation fronts and hydrothermal activity.  相似文献   

6.
扬子地块泥盆纪—石炭纪古地磁新结果及其古地地理意义   总被引:15,自引:1,他引:15  
张世红  朱鸿等 《地质学报》2001,75(3):303-313
本文通过对扬子地块西南缘贵州独山-平塘地区泥盆-石炭纪316块定向岩心样品的系统退磁处理,揭示出晚侏罗世、新生代两期重磁化成.73个岩心样品,分布在早一中泥盆世(17个)、晚泥盆世(25个)、早石炭世(24个)和中-晚石炭世(7个)4个统计单元,得到了最可能的原生剩磁。结合已有的古地磁数据,修订了扬子地块极移曲,纯利 移曲线拟合的结果表明,扬子地块在早古生代是冈瓦那大陆的组成部分,与印度-喜马拉雅-澳大利亚地区临近。晚泥盆世、冈瓦那大陆发生大规模顺时针旋转,扬子地块开始与之分离。  相似文献   

7.
We present the results of paleomagnetic study of Ediacaran sedimentary successions from the Southern Urals. The analysis of the sedimentary rocks of the Krivaya Luka, Kurgashlya and Bakeevo Formations reveal stable mid-temperature and high-temperature remanence components. Mid-temperature components were acquired during Devonian (Bakeevo Formation) and Late Carboniferous–Early Permian remagnetization events. The high-temperature components in Kurgashlya and Bakeevo Formations are interpreted to be primary, because they are supported by a positive conglomerate test (Bakeevo Formation) and magnetostratigraphic pattern (Kurgashlya Formation). The high-temperature component in the Krivaya Luka Formation is interpreted to be a Late Ediacaran overprint. Our new paleomagnetic poles together with some previously published Ediacaran poles from Baltica and Laurentia are used herein to produce a series of paleogeographic reconstructions of the opening of the Iapetus Ocean.  相似文献   

8.
U–Pb baddeleyite ages of 1592 ± 3 and 1590 ± 4 Ma are reported for paleomagnetic sites in sheets and dykes of Western Channel Diabase (WCD) that intrude Proterozoic rocks of the flat-lying Hornby Bay Group in the Hornby Bay basin and the deformed volcanic-plutonic Great Bear Magmatic Zone of Wopmay orogen of northwestern Laurentia. A published WCD paleomagnetic pole at 9°N, 115°W (A95 = 6°) has been demonstrated primary. The new ages indicate that the WCD pole falls midway in time between poles for the 1.74 Ga Cleaver dykes and 1.48–1.42 Ga Elsonian-aged plutons, filling an important gap in the Proterozoic apparent polar wander path (APWP) for Laurentia. The WCD pole can be compared with poles reported from similar-aged magmatic units on other cratons in order to test paleocontinental reconstructions. A comparison of the Laurentian WCD pole with primary ca. 1.63 Ga and ca. 1.575 Ga poles for Baltica, along with an earlier comparison of precisely dated 1.27–1.255 Ga poles for Laurentia and Baltica, suggests that the two cratonic blocks drifted as a single entity with Baltica adjacent to eastern Greenland during the ca. 1.59–1.27 Ga interval. On the basis of less well constrained ca. 1.84–1.83 Ga poles from Laurentia and Baltica, it is possible that this reconstruction existed as early as ca. 1.83 Ga. The WCD is the same age as Wernecke breccias of the Wernecke and Ogilvie Mountains of northwestern Laurentia and bimodal Gawler Range Volcanics (GRV) and related Olympic Dam breccias of the Gawler craton. It has been proposed by others that the Gawler craton lay adjacent to northwestern Laurentia at 1.59 Ga, with the Olympic Dam and Wernecke breccias forming a large hydrothermal province. The primary WCD pole provides an opportunity to test Laurentia–Gawler craton reconstructions at 1.59 Ga. A paleopole has been reported for the GRV, although its primary or secondary nature is open to interpretation. If primary, or if acquired as an overprint during the later stages of 1.60–1.58 Ga Hiltaba-GRV magmatism, then a position for the Gawler craton adjacent to northwestern Laurentia is permitted. If the GRV pole is a later secondary overprint then a reliable comparison with Laurentian poles cannot be made.  相似文献   

9.
The Variscan mountain belt in Iberia defines a large “S” shape with the Cantabrian Orocline in the north and the Central Iberian curve, an alleged orocline belt of opposite curvature, to the south. The Cantabrian Orocline is kinematically well constrained, but the geometry and kinematics of the Central Iberian curve are still controversial. Here, we investigate the kinematics of the Central Iberian curve, which plays an important role in the amalgamation of Pangea since it may have accommodated much of the post-collisional deformation. We have performed a paleomagnetic study on Carboniferous granitoids and Cambrian limestones within the hinge of the curve. Our paleomagnetic and rock magnetic results show a primary magnetization in the granitoids and a widespread Carboniferous remagnetization of the limestones. Syn-kinematic granitoids show ca. 70° counter-clockwise rotations consistent with the southern limb of the Cantabrian Orocline. Post-kinematic granitoids and Cambrian limestones show consistent inclinations but very scattered declinations suggesting that they were magnetized coevally to and after the ~ 70° rotation. Our results show no differential rotations between northern, southern limb and the hinge zone. Therefore, we discard a late Carboniferous oroclinal origin for the Central Iberian curve.  相似文献   

10.
During the Carboniferous Period the Yarrol and New England Orogens comprised an active depositional margin east of cratonised parts of Australia. Patterns of deposition within the orogens were probably controlled by dextral shear systems believed responsible for tectonism and the positions of the various depositional elements (volcanic chain, shelf, slope and basin, pull‐apart troughs and graben), and global changes in sea level. These patterns are illustrated by a series of non‐palin‐spastic palaeogeographic reconstructions.

In the Early Carboniferous, similar patterns of deposition existed within the western volcanic chain, marine shelf, and eastern slope and basin provinces of both orogens. Sediments were deposited in two cycles. They range from volcanic fluvial and marine sandstone to siltstone, mudstone and turbidites. Complex depositional patterns within shelfal regions are shown in detailed palaeogeographic reconstructions.

This uniform pattern changed during the latest Visean and Namurian, with the uplift of the New England Arch, subsidence of a non‐marine graben (Werrie Trough) to the west, and development of a new shelf in the east. The Werrie Trough received volcanics as well as fluvial and glacigene sediments, and the shelf marine sandstone and siltstone. The Yarrol Orogen was unaffected by tectonism but there was a change in provenance.

Late in the Carboniferous the Yarrol Orogen was restructured by the intrusion of granitoids into the former volcanic chain, and development of the Yarrol and North D'Aguilar Troughs as probable pull‐apart basins. In the New England Arch, deformation and metamorphism were followed by intrusion of S‐type granitoids. A comparable episode of deformation and metamorphism affected the southeastern part of the Yarrol Orogen at the end of the Carboniferous Period. This partial cratonisation of the mobile zone was a prelude to widespread basin formation during the Permian Period.  相似文献   

11.
The present comment disproves the tectonic model of a late Devonian/early Carboniferous Tibetan-style collisional plateau in the Teplá-Barrandean (TB) part of the Bohemian Massif, which later collapsed by thermal weakening of the underlying crust. Contrary to this model, the TB neither reveals major crustal thickening nor uplift and erosion, and eastern continuations of the TB were, during the relevant time-span, areas of open marine sedimentation. Late Devonian/early Carboniferous marine sediments widespread also in the Armorican and Central Massifs of France testify to low topography in central parts of the Variscan orogen. Notional traces of a Permo-Carboniferous ice cap on the French Massif Central do not support the plateau model, because they are questionable and much younger than the inferred plateau stage of the TB. The relative uplift of high-grade metamorphic rocks to the NW and the SE of the TB is not due to sinking of an elevated TB, but, instead, to the hydraulic and buoyant expulsion of HP material from the Saxo-Thuringian and Moldanubian subduction channels. The rise of lower-grade HT rocks along the southwestern margin of the Bohemian Massif was effected by late Carboniferous transpression. The high temperature and the resulting low viscosity of the rising materials were probably not caused by Variscan mantle delamination, but relate to lithospheric thinning and heating at the tip of the westward propagating Tethys Rift.  相似文献   

12.
Paleomagnetic data on Middle- and Late-Paleozoic rocks from the central part of the Ural-Mongolian Belt in Kazakhstan are considered. The primary remanences in the Permian rocks and secondary magnetization components of the same age in pre-Permian rocks of central and northern Kazakhstan are not rotated relative to the East European Platform. In southern Kazakhstan adjoining the Tien Shan almost all data point to large, up to 90°, counterclockwise rotation of blocks. These rotations, related to the regional wrench fault zone, must be subtracted from older paleomagnetic data to ensure their correct interpretation. The paleomagnetic declinations in Upper Carboniferous rocks coincide more or less over all of Kazakhstan, whereas the Silurian and Early Devonian declinations in the north and south of Kazakhstan differ approximately by 180°. It can be suggested that the Devonian volcanic belt, having a horseshoe outline, was initially an almost rectilinear NW-trending feature. Its oroclinal bending took place in the Devonian and Early Carboniferous and completed by the Late Carboniferous. We compared the model of the Kazakh Orocline based on paleomagnetic data with the geological events in this territory. It turned out that a slow bending of an initially rectilinear subduction zone is consistent with lateral migration of active volcanism and folding inside a developing loop, whereas extension outside the loop was accompanied by subsidence and rifting. In general, the proposed model connects the main tectonic events in Kazakhstan with the movements established from paleomagnetic data.  相似文献   

13.
The Mullaley Sub-basin of the Gunnedah Basin extends from Quirindi in the southeast, to north of Narrabri, to west of Dunedoo in northern New South Wales. There have been more than 100 boreholes sunk to basement investigating the (lower Permian) Cisuralian coal and coal seam gas resources of the Mullaley Sub-basin since the early 1990s. A desktop review of this open file information has allowed the formal correlation and naming of six Cisuralian coal members attaining a maximum 35 m of cumulative thickness within an upward coarsening sedimentary package totalling no more than 150 m. In ascending order, the coal members are: Bibblewindi (0–10 m), Bohena (3–18 m), Collygra (0.5–3 m), Coxs (1.5–4 m), Tullamullen (0.5–4 m) and Mooki (0.5–3 m).

Cisuralian coal seams in the Maules Creek Formation of the southern Mullaley Sub-basin are here correlated with those of the Greta Coal Measures at Werris Creek and Muswellbrook. It is apparent that basement paleotopography played a significant role in the Cisuralian coal development as coals are best developed where the sedimentary sequence is greater than 60 m thick, as there the thick seams (Bohena and Bibblewindi coal members) occur towards the base of the sequence. The maximum western limit of the Cisuralian coals (Rocky Glen Ridge) is further east than previously inferred with new drilling information showing the Porcupine Formation directly overlying the barren pelletoidal claystones of the Leard Formation or the underlying volcanics (Boggabri Volcanics/Werrie Basalt). Early marine transgressions at the top of the Maules Creek Formation have stopped development of the Mooki, Tullamullen and Coxs coal members in the northern and eastern Mullaley Sub-basin and allowed the development of localised paraconglomerate (diamictite) intervals up to 10 m thick. Thick (>20 m cumulative) coal occurrences are localised to the Jacks Creek and Pilliga East State Forest areas southwest of Narrabri. The coal resource potential of the Mullaley Sub-basin is estimated at 13–28 billion tonnes.  相似文献   


14.
Granulite facies tonalitic gneiss, mafic granulite and late metadolerite dykes from Bremer Bay in the Mesoproterozoic Albany Mobile Belt yield palaeomagnetic remanence that were acquired between ca 1.2 Ga and 1.1 Ga. A well‐constrained pole (66.6°N, 303.7°E) fits the ca 1.2 Ga part of the Precambrian Australian apparent polar wander path. This pole is in agreement with the high‐latitude position of Australia at ca 1.2–1.1 Ga shown on some Rodinia reconstructions. More data are required before any significance can be attributed to a second, poorly defined pole (41.8°S, 243.7°E) that falls at some distance from the ca 0.8 Ga part of the Australian apparent polar wander path. Magnetic anisotropy measurements from all samples except late granite dykes indicate northeast‐southwest elongation (i.e. parallel to the local trend of the orogenic belt) and northwest‐southeast contraction. This is in agreement with the orientation of principal strain axes deduced from structures formed during late stages of ductile deformation. The mean magnetic fabric lineation (long axis of the strain ellipsoid) is subparallel to a mineral elongation lineation and the axes of late upright to inclined folds. Short axes of the strain ellipsoid determined from magnetic fabric measurements are in a similar orientation to poles to the axial surfaces of these folds and to the associated cleavage. This mean shortening axis bisects late conjugate ductile shear zones that overprint the folds. This study has shown that structurally complex high‐grade gneisses and intrusive rocks with variable timing relationships may yield meaningful palaeomagnetic results for late stages of metamorphism. Magnetic anisotropy analysis is also seen to be a valuable tool in providing principal strain directions for late ductile deformation.  相似文献   

15.
A detailed rock magnetic and paleomagnetic study was performed on samples from the Neoproterozoic Itajaí Basin in the state of Santa Catarina, Brazil, in order to better constrain the paleogeographic evolution of the Rio de la Plata craton between 600 and 550 Ma. However, rock magnetic properties typical of remagnetized rocks and negative response in the fold test indicated that these rocks carried a secondary chemical remanent magnetization. After detailed AF and thermal cleaning, almost all samples showed a normal polarity characteristic remanent magnetization component close to the present geomagnetic field. The main magnetic carriers are magnetite and hematite, probably of authigenic origin. The mean paleomagnetic pole of the Itajaí Basin is located at Plat = − 84°, Plong = 97.5° (A95 = 2°) and overlaps the lower Cretaceous segment of the apparent polar wander path of South America, suggesting a cause and effect with the opening of the South Atlantic Ocean. A compilation of remagnetized paleomagnetic poles from South America is presented that highlights the superposition of several large-scale remagnetization events between the Cambrian and the Cretaceous. It is suggested that some paleomagnetic poles used to calibrate the APWP of Gondwana at Precambrian times need to be revised; the indication of remagnetized areas in southern South America may offer some help in the selection of sites for future paleomagnetic investigations in Precambrian rocks.  相似文献   

16.
The studied Carboniferous flysch and molasse sediments from the Intra-Sudetic Basin correspond to the period from Middle Visean to Early Autunian. Main magnetic minerals carrying the natural remanent magnetization (NRM) are goethite, magnetite, maghemite and hematite, all usually secondarily formed and/or remagnetized due to several tectonometamorphic events. In most samples several NRM components were isolated. One of them is usually a Jurassic-Triassic overprint. Some others define the Westphalian-Early Permian segment of the declination and inclination trajectory for the Sudetes calculated according to the reference apparent polar wander path for the Baltica plate. The Sudetic path is slightly shifted to the east compared to the reference path, suggesting the possibility of independent movements of the Sudetes during this time. The majority of isolated NRM components are secondary and related to the Sudetic orogenic phase and later tectonometamorphic activity.  相似文献   

17.
The end-Triassic mass extinction and the transition and explosive diversification of fauna over the Triassic-Jurassic boundary is poorly understood and poorly represented in the rock record of the Southern Hemisphere. This is despite the rich diversity in both body and trace fossils of Triassic-Jurassic age in southern Africa, which is not found in coeval Northern Hemisphere localities. We report here the first palaeomagnetic polarity zonation of the Upper Triassic-Lower Jurassic continental red bed succession (Elliot Formation; Stormberg Group) in southern Africa. The results from 10 partially overlapping sections, with a composite thickness of ~ 280 m, provide a magnetic polarity chronology of the main Karoo Basin in South Africa and Lesotho. Palaeomagnetic analyses reveal that heating samples to between 150 °C and ~ 300 °C removes the secondary, moderately inclined (~ 48°) normal-polarity component of remanent magnetization. This component overlaps with the present-day field and is comparable to the overprint direction expected from Lower Jurassic Karoo dolerite intrusions. In contrast, a likely primary, high unblocking temperature component, of dual polarity, consistently is of steeper inclination (~ 63°). This characteristic remanence passes the reversals test, except where means are based on small sample populations. There are only two resulting polarity zones for the ~ 200 m thick lower Elliot Formation (LEF) with potential for a thin 3rd magnetozone in the uppermost part. The upper Elliot Formation (UEF), in contrast, which was sampled over a thickness of ~ 80 m, has five polarity zones. The failure of the reversal test for the UEF and combined Elliot Formation (LEF + UEF) indicates that the normal polarity samples may be biased by a younger overprint of either the Jurassic normal polarity of the Karoo Large Igneous Province or present day field. The separate poles calculated for the four sites in the LEF and ten sites in the UEF overlap with the Late Triassic and Early to Middle Jurassic Gondwana poles, respectively. The combined Elliot Formation and UEF pole positions are better constrained than the LEF and therefore considered more reliable. Overall the LEF shows considerable overlap with the Late Triassic Apparent Polar Wander Paths (APWP) poles.  相似文献   

18.
新疆南天山构造格架及构造演化   总被引:8,自引:1,他引:7  
南天山碰撞造山带位于西伯利亚与塔里木地块之间的北亚造山区南部的天山造山系的中南部,是塔里木地块与哈萨克斯坦-准噶尔地块之间的一条构造带,地理上由哈尔克山、额尔宾山、虎拉山等组成,地质上主要由古生代地质体组成,其南北两侧均为活动陆缘,中间由洋壳残片、洋岛和增生杂岩组成,是南天山古生代洋盆演化的产物。南天山古洋盆从震旦纪裂解,寒武纪持续扩张,奥陶纪—石炭纪向南北两侧俯冲闭合,至二叠纪南天山造山带进入后造山调整阶段。  相似文献   

19.
Azhgaliyev  D. K.  Karimov  S. G. 《Geotectonics》2020,54(4):529-542

The paper presents a comprehensive analysis of new data for drilling and seismic survey of the oil and gas potential of deep-seated Paleozoic horizons of the Caspian Basin in Kazakhstan. The features of the development and occurrence of large Paleozoic uplifts and sedimentary strata promising for prospecting are specified. A set of geological and geophysical methods was applied, and magnetic and gravitational anomalies of potential fields were analyzed in the southern, southeastern, and eastern marginal parts of the southeastern sector of the Caspian Basin. This is supplemented with new data obtained by a set of reconnaissance methods, and the section attributed to the Paleozoic at depths up to 5.5–8.0 km and its Devonian–Lower Carboniferous sequence are specified. New data were obtained on the area of distribution and occurrence of Upper Devonian and Lower Carboniferous sediments, geological conditions and prerequisites were revealed that refined the trace of the pre-Devonian complex and of the Lower–Middle Devonian sediments. Analysis of the distribution of large local prospecting objects has confirmed the presence and development of megauplifts, which are zones of hypsometrically elevated Devonian–Lower Carboniferous sediments. In the contour of the megauplift, structural elements have developed that are less significant, but promising in terms of hydrocarbon content. Based on the results of studying and refining the distribution patterns of large Devonian‒Lower Carboniferous objects and identifying megauplifts, it is possible to optimize regional studies in the Caspian Basin for the period of 2020–2030.

  相似文献   

20.

The Hastings Terrane comprises two or three major fragments of the arc‐related Tamworth Belt of the southern New England Orogen, eastern Australia, and is now located in an apparently allochthonous position outboard of the subduction complex. A palaeomagnetic investigation of many rock units has been undertaken to shed light on this anomalous location and orientation of this terrane. Although many of the units have been overprinted, pre‐deformational magnetizations have been isolated in red beds of the Late Carboniferous Kullatine Formation from the northern part of the terrane. After restoring these directions to their palaeohorizontal (pre‐plunging and pre‐folding) orientations they appear to have been rotated 130° clockwise (or 230° anti‐clockwise) when compared with coeval magnetizations from regions to the west of the Hastings Terrane. Although these data are insensitive to translational displacements, a clockwise rotation is incompatible with models previously proposed on geological grounds. While an anti‐clockwise rotation is in the same sense as these models the magnitude appears to be too great by about 100°. Nevertheless, the palaeomagnetically determined rotation brings the palaeoslopes of the Tamworth Belt, facing east, and the Northern Hastings Terrane, facing west before rotation and facing southeast after rotation, into better agreement. A pole position of 14.4°N, 155.6°E (A95 = 6.9°) has been determined for the Kullatine Formation (after plunge and bedding correction but not corrected for the hypothetical rotation). Reversed magnetizations interpreted to have formed during original cooling are present in the Werrikimbe Volcanics. The pole position from the Werrikimbe Volcanics is at 31.6° S, 185.3° E (A95 = 26.6°). These rocks are the volcanic expression of widespread igneous activity during the Late Triassic (~ 226 Ma). While this activity is an obvious potential cause of the magnetic overprinting found in the older units, the magnetic directions from the volcanics and the overprints are not coincident. However, because only a few units could be sampled, the error in the mean direction from the volcanics makes it difficult to make a fair comparison with the directions of overprinted units. The overprint poles determined from normal polarity magnetizations of the Kullatine Formation is at 61.0°S, 155.6°E (A95 = 6.9°) and a basalt from Ellenborough is at 50.7° S, 148.8° E (A95 = 15.4°), and from reversed polarity magnetizations, also from the basalt at Ellenborough is at 49.4° S, 146.2° E (A95 = 20.4°). These are closer to either an Early Permian or a mid‐Cretaceous position, rather than a Late Triassic position, on the Australian apparent polar wandering path. Therefore, despite their mixed polarity, and global observations that the Permian and mid‐Cretaceous geomagnetic fields were of constant polarities, the age of these overprint magnetizations appears to be either Early Permian or mid‐Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号